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Abstract

In this PhD dissertation we present new and improved techniques for secure
two-party computation (2PC) with malicious security. Starting from the
asymptotically efficient LEGO paradigm introduced by Nielsen & Orlandi
(TCC 2009), we propose several optimizations and for the first time investigate
its practical efficiency in detail. Our findings show that, in contrast to earlier
beliefs, LEGO can be among the most practical techniques to date for 2PC
using garbled circuits. In more detail

• We present a new UC-secure XOR-homomorphic commitment scheme
specifically tailored to the LEGO context that is very close to being
communication optimal. Our scheme is based on the non-homomorphic
version of the commitment scheme of Cascudo et al. (PKC 2015). How-
ever, we manage to add the additive homomorphic property, while at the
same time reducing the concrete communication overhead. As an example,
when considering commitments to 128-bit strings with statistical security
s = 40 our protocol sends 2.6x less data than the non-homomorphic
version of Cascudo et al. and 75x less than their homomorphic version.

• Next, we present various optimizations of the recent TinyLEGO 2PC
protocol of Frederiksen et al. (ePrint 2015), including a new efficient
solution to the so-called selective OT-Attack. The resulting protocol is
optimized for the offline/online setting, concretely efficient, runs in a con-
stant number of rounds and supports the notion of function-independent
preprocessing. Armed with the above commitment scheme we implement
this LEGO protocol and find that it is highly competitive with all recent
2PC protocols based on garbled circuits.

• Finally, we generalize the idea of LEGO to any subcircuit size (LEGO
considers only boolean gates). We show that this new DUPLO technique
for 2PC can be superior to all previous techniques in the malicious setting,
depending on the structure of the function to securely compute. Our
experiments show that in various settings DUPLO is between 2-7x faster
than any other 2PC protocol. In this way, we contribute with a highly
versatile approach that is more efficient than any multi-execution protocol
to date, while at the same time being superior in the single-execution
setting for a rich class of functions.
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Resumé

I denne PhD afhandling præsenterer vi nye og forbedrede teknikker til sikre
to-parts beregninger (2PC) med aktiv sikkerhed. Med udgangspunkt i det
asymptotisk effektive LEGO paradigme introduceret af Nielsen & Orlandi
(TCC 2009), foreslår vi en række forbedringer og undersøger for første gang
paradigmets praktiske effektivitet i detaljer. Vores resultater viser, i modsæt-
ning til den gængse opfattelse, at LEGO kan være blandt de mest praktiske
teknikker til dato inden for 2PC der bruger krypterede kredsløb.

• Vi præsenterer et nyt UC-sikkert XOR-homomorft commitment system,
der er specifikt designet til LEGO-konteksten og er meget tæt på at være
optimalt i forhold til kommunikation. Vores system er baseret på det
ikke-homomorfe commitment system af Cascudo et al. (PKC 2015). Vi
lykkes dog at tilføje homomorfi og på samme tid reducere det konkrete
kommunikationsoverhead. Som et eksempel, for commitments til 128-bit
strenge med statistisk sikkerhed s = 40 sender vores protocol 2.6x mindre
data end den ikke-homomorfe version af Cascudo et al., og 75x mindre
end deres homomorfe version.

• Vi fremlægger dernæst en række forbedringer af den nylige TinyLEGO
2PC protokol af Frederiksen et al. (ePrint 2015), inklusiv en ny effektiv
løsning til det såkaldte selektive OT-Angreb. Dette medfører en protokol
der er fintunet til offline/online modellen, effektiv i praksis, kører i et
konstant antal runder og understøtter funktionsuafhængig præprocesse-
ring. Udstyret med ovenstående commitment system implementerer vi
denne LEGO protokol og finder at den er konkurrencedygtig med alle
nylige 2PC protokoller baseret på krypterede kredsløb.

• Slutteligt generaliserer vi LEGO-ideen til enhver sub-kredsløb størrelse
(LEGO bruger kun boolske gates). Vi viser at denne nye DUPLO teknik
til 2PC kan være alle tidligere teknikker i den aktive model overlegen,
afhængig af strukturen af den funktion der skal beregnes sikkert. Vores
eksperimenter viser at i nogle sammenhænge er DUPLO mellem 2-7x
hurtigere end alle eksisterende 2PC protokoller. Vi bidrager dermed med
en meget versatil teknik, der er mere effektiv end nogen anden multi-
udførsel protokol, mens den på samme tid er overlegen i single-udførsel
modellen for en rig klasse af funktioner.

iii





Acknowledgement

Firstly, I would like to thank my main supervisor Jesper Buus Nielsen for the
support and guidance provided throughout my PhD years and for taking me on
as a student in the first place. I thank my co-supervisor Ivan Bjerre Damgård
for his guidance and intriguing teaching which initially got me exited about
cryptography. I am truly grateful to my former and current colleagues at the
Aarhus University crypto group for making my research years so giving and
fulfilling. I am proud to say I have worked alongside giants, both personally
and professionally.

Further, I would like to thank Thomas Schneider for accepting my research
proposal and hosting me on several occasions at TU Darmstadt. It has been a
very fruitful experience, which has broadened my horizon on practical secure
computation. To this end, I additionally credit Michael Zohner for our many
discussions on the topic and his help in getting me started on implementing
secure computation protocols.

This dissertation is indeed the result of a lot of hard work on my part, but it
would never have been possible without the great contributions of my brilliant
co-authors Ignacio Cascudo, Ivan Bjerre Damgård, Bernardo Machado David,
Irene Giacomelli, Jesper Buus Nielsen, Tore Kasper Frederiksen, Thomas P.
Jakobsen, Thomas Schneider, Vladimir Kolesnikov, Mike Rosulek, Ni Trieu,
and Peter Rindal. I am honored to have worked alongside each of you.

My greatest thanks however goes to my family, Daniela and Sofia (and
Emilio-to-be), for putting up with me in the times of heavy workloads, high
frequency traveling and with me being distant due to work-related matters –
know that you are my greatest strength and reason for everything I do.

Roberto Trifiletti,
Aarhus, October 4, 2017.

v





Contents

Abstract i

Resumé iii

Acknowledgement v

Contents vii

I Overview 1

1 Introduction 3
1.1 Approaches to Secure Computation . . . . . . . . . . . . . . . . 4
1.2 Contributions and Timeline of the PhD Project . . . . . . . . . 7

2 Preliminaries 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Universal Composability . . . . . . . . . . . . . . . . . . . . . . 12

II Publications 19

3 On the Complexity of Additively Homomorphic UC Com-
mitments 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Comparison with Recent Schemes . . . . . . . . . . . . . . . . . 39
3.5 Protocol Extension . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Constant Round Maliciously Secure 2PC with Function-
independent Preprocessing using LEGO 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 A New Approach to Eliminate the Selective-OT Attack . . . . 54

vii



Contents

4.4 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 DUPLO: Unifying Cut-and-Choose for Garbled Circuits 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Overview of the LEGO Paradigm . . . . . . . . . . . . . . . . . 84
5.4 Overview of Our Construction . . . . . . . . . . . . . . . . . . . 85
5.5 DUPLO Protocol Details . . . . . . . . . . . . . . . . . . . . . 87
5.6 System Framework . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.8 Protocol Details . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.9 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 133

viii



Part I

Overview

1





Chapter 1

Introduction

Secure Multiparty Computation (MPC), originally introduced in 1982 by
Andrew Yao [Yao82, Yao86], is a cryptographic technique allowing arbitrary
computations on distributed data without revealing anything but the output
to the participating parties. In more detail, the technology allows for n
parties Pi for i = 1, . . . , n, each holding some private data xi, to perform any
joint computation f(x1, x2, . . . , xn) without revealing their private data to one
another.

To concretise the above abstract description, consider todays recurring
incidents of online large-scale data breaches (5,428 public incidents since 2005
[Cle17]). When it comes to keeping people’s private data safe from intruders,
MPC offers an elegant solution without sacrificing functionality for security. It
is well-known that an effective counter-measure to data theft is to make the
data unintelligible to begin with, for instance through encryption. If combined
with the cryptographic key being stored in a separate secure location, this
solution is highly effective as an attacker must then break into (at least) two
distinct systems. These systems could potentially be situated at different
physical locations running different hardware/software to further enhance
security. Unfortunately, this approach has the major downside of disabling
processing of the data while in encrypted form. Therefore, in order to decrypt
and process the data, knowledge of the key is required by the processing
system at some point in time, creating an opportunity for the attacker to
target that system directly. To alleviate this issue, MPC can be applied and
can achieve the best of both worlds: the data is stored encrypted at all times,
but can still be processed by a system that has no knowledge of the decryption
key. In brief, the MPC computation would be comprised of two parties, the
processing system and the key-holder system. The computation f can then be
defined to first decrypt the data, secondly compute the prescribed processing
and optionally re-encrypt the data under a new key. As only the output of
the processing is revealed to the parties, the data at rest is kept confidential,
potentially towards both participating systems.
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1. Introduction

The above scenario is just one example of the applicability of secure
computation, but illustrates the power and potential of MPC in todays’ data-
driven society. Although already introduced in the early 80s, it was only in 2008
that the first real world application of MPC was presented [BCD+09]. The
project successfully ran a sealed bid auction using MPC among Danish sugar
beet farmers and the only Danish sugar beet processor, Danisco, to securely
compute the market clearing price. Since 2008, MPC has had several real
world applications, e.g. in managing cryptographic keys [Sep, Dya], privacy
preserving data analysis [Sha] and computing aggregate pay equity metrics by
gender and ethnicity [BLJ+17].

The primary goal of this PhD research project has been to develop more
efficient techniques for secure computation as many of todays’ problems and
data-set sizes are still out of reach for secure processing. It is therefore the
hope that the techniques presented here will contribute to the joint effort of the
secure computation community in making secure computation more applicable
at a large scale. Examples could be in emerging data-intensive areas such as
DNA processing, privacy-preserving machine learning and cloud computing.
Before going into details of the contributions of the project we briefly survey
and discuss the existing fundamental paradigms and techniques for secure
computation.

1.1 Approaches to Secure Computation

Secure computation was initially proposed by Andrew Yao in the early 80s,
introducing what is today known as Yao’s garbled circuits for general-purpose
secure two-party computation [Yao86]. The protocol offers semi-honest security,
meaning that as long as no party deviates from the protocol specification, no
information about the inputs are exposed (see Section 2.2 for more details
on semi-honest security). Later, in 1987 Goldreich, Micali and Wigderson
[GMW87, Gol04] presented the first protocol supporting an arbitrary number
of parties and at the same time guaranteeing the stronger notion of malicious
security. Essentially this guarantees that any protocol deviation is detected by
the honest parties, and we again refer to Section 2.2 for more details on these
adversarial models.

It is worth mentioning that both the protocol of [Yao86] and [GMW87]
require complexity-theoretic assumptions to guarantee security, such as the
existence of trapdoor permutations (see e.g. [KL14, p. 488] for a formal
definition of this primitive). In contrast, the later proposed information-
theoretic protocols of [BGW88, CCD88] does not require any such assumptions
and still guarantee malicious security as long as at most one third of the parties
are corrupt. An important distinction between these information-theoretic
and the computational protocols of [Yao86, GMW87] is the domain of the
computation, as the latter support computations over F2 only, whereas the
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1.1. Approaches to Secure Computation

former support any (sufficiently large) finite field F. Theoretically both of these
representations can compute any function, but in practice the difference in
performance can be significant. However as neither representation dominates
the other, it is highly function-dependent which is best suited. As we will
discuss in more detail in the following, there are many such trade-offs in the
landscape of secure computation and one needs to carefully pick the protocol
to match the application for maximal performance.

Since the initial theoretical discoveries of the 80s, significant research effort
has gone into improving and innovating protocols and techniques for MPC.
However, even after 30 years of active research, the most efficient protocols
for general-purpose MPC are still based on the above fundamental protocols,
indeed a testament to the deep insights of the pioneers of the field.

Paradigm Trade-offs

As can be seen from the above-mentioned protocols, there are many axes
of properties to consider when choosing a MPC protocol for an application,
including

Function Domain: Boolean or Arithmetic representation.
Security Guarantees: Semi-honest or Malicious.
Number of Supported Parties: Fixed or Arbitrary number.
Required Assumptions: General, specific or no assumption.

In this PhD dissertation, we present new techniques and insights improving
practical efficiency of secure computation focusing on maliciously secure two-
party computation of boolean functions under complexity-theoretic assumptions.
With these restrictions in mind, the main paradigms for secure computation
of boolean functions are GMW and Yao. We therefore briefly survey both
approaches in terms of efficiency trade-offs, and highlight todays’ state-of-the-
art protocols that fall into these categories and summarize these in Table 1.1.

GMW. The GMW protocol shares many similarities to the previously men-
tioned arithmetic protocols of [BGW88, CCD88], as it also follows a secret-
sharing based approach. In more detail, the parties initially secret-share
their inputs and then interactively evaluate the function in order to obtain
a secret-shared output. By interactively we mean that the protocol requires
O(depth(f)) rounds of communication. Skipping many details, the highlights
of the GMW approach is that it scales naturally to any number of parties,
only uneven computation gates require interaction and it can be based on the
general assumption of oblivious transfer (OT, see Figure 2.2 for more details
on this primitive). Recent protocols following the GMW paradigm includes
[CHK+12, SZ13] for semi-honest security and [NNOB12, LOS14, BLN+15] for
malicious security.

5



1. Introduction

GMW Yao
Semi-honest Malicious Semi-honest Malicious

Overhead O(κ) O(sκ/log |f |) O(κ) O(sκ/log |f |)
# Rounds O(depth(f)) O(1)
# Parties n n
Free-XOR X X
Preprocessing X X
Assumption OT OT

Table 1.1: Summarizing the main properties of the GMW and Yao paradigms
for secure computation of boolean functions.

Yao. Unlike GMW, Yao’s garbled circuits protocol is highly asymmetric,
meaning that the two parties play distinct roles during execution. On a high
level, one party (the constructor) initially “garbles” the function f , and through
OT it offers the other party (the evaluator) to learn “encrypted” inputs for
the computation. Finally, it sends its own encrypted inputs along with the
garbling of f , which the evaluator can then use to evaluate the garbled circuit
and recover the plaintext output. This approach also differs from GMW in
that it only requires a constant amount of communication rounds, as opposed
to increasing with the depth of f . Therefore, when it comes to high-latency
networks, such as WANs, Yao’s approach almost always outperforms GMW
due to the overhead induced by the network latency. Although traditionally
bounded to only two parties, the seminal result of [BMR90] presents a way of
extending Yao’s garbled circuits to an arbitrary number of parties as well. Until
very recently, the [BMR90] protocol has mainly been considered a theoretical
result, but the recent works of [LPSY15, LSS16] have presented several concrete
optimizations to [BMR90]. Additionally, they have shown run-time experiments
which indicate that for some settings, multi-party Yao is more efficient than
multi-party GMW. We note, however, that the GMW approach seems to scale
better than BMR in the number of parties and in most situations, multi-party
GMW is still superior to multi-party Yao.

Several optimizations have been proposed over the years for Yao’s gar-
bled circuits, including the celebrated Free-XOR technique [KS08], Point-
and-Permute [BMR90] and the garbled row reduction techniques of [NPS99,
KMR14, ZRE15]. Recent protocols with semi-honest security based on Yao
includes [SZ13, DSZ15]. For the case of malicious security, the canonical
approach to making Yao actively secure is based on Cut-and-Choose (C&C)
where the constructor sends O(s) garbled circuits to the evaluator instead
of one. A fraction of these are then opened and verified to be correct, after
which the remaining are used for evaluation, guaranteeing that no cheating
can occur. In the past decade, improving concrete efficiency of malicious
Yao has received a lot of attention from the secure computation community

6



1.2. Contributions and Timeline of the PhD Project

and tremendous advances has been made, both asymptotically and concretely
[LP07, NO09, PSSW09, LP11, sS11, HEKM11, KsS12, FJN+13, Bra13, FN13,
HKE13, Lin13, MR13, sS13, HMsG13, FJN14, AMPR14, WMK17, KRW17b].

1.2 Contributions and Timeline of the PhD
Project

The main contributions of this PhD dissertation are in the realm of general-
purpose secure two-party computation based on Yao’s garbled circuits with
malicious security. However, several of the proposed techniques and opti-
mizations are general and have already seen applications beyond two-party
Yao.

At the onset of this research project the asymptotically best approach in the
above context, using a constant amount of rounds, was the LEGO paradigm
introduced by Nielsen & Orlandi in [NO09] and further optimized in [FJN+13].
This approach considers a gate-level approach to C&C which reduces the
overhead from O(sκ) to O(sκ/log |f |) where κ and s is the computational and
statistical security parameter, respectively, and |f | is the number of AND
gates considered in the computation. Further, the LEGO paradigm naturally
offers additional useful properties such as supporting function-independent
processing, allowing reactive computations [NR16] and having a highly efficient
online-phase. To this end, one would therefore expect LEGO to become
superior to the other O(sκ) approaches as |f | increases. However, back-of-
the-envelope calculations indicated that the total overhead induced by this
gate approach, albeit constant, was still orders of magnitude away from being
competitive with the contemporary state-of-the-art protocols.

The high concrete overhead of LEGO stems from the usage of UC-secure
XOR-homomorphic commitments on all circuit wires, which are needed to
securely combine the garbled AND gates into a circuit computing f . Although
[FJN+13] had made significant progress in reducing the commitment overhead
over [NO09] it was still far from making LEGO competitive in practice. This
was the main motivation for our work on improving practical efficiency of UC
XOR-homomorphic commitments [CDD+15, FJNT16] appearing at PKC 2015
and TCC 2016-A, respectively. As [FJNT16] is a direct successor to [CDD+15],
we here focus solely on the more efficient [FJNT16] which also constitute the
third chapter of this dissertation. In short we present an extremely efficient
UC-secure XOR-homomorphic commitment scheme, and furthermore present
concrete optimizations directly applicable to the LEGO setting. In more detail,
the following results are achieved

Chapter 3 We present the first construction of a UC-secure additively homo-
morphic commitment scheme that achieves close to optimal communi-
cation complexity in both the commitment and decommitment phase.

7



1. Introduction

In particular, when (de)committing to binary strings of length k, our
scheme requires k+o(1) bits of communication.1 The results are achieved
by augmenting the non-homomorphic scheme of [CDD+15] with an ef-
ficient consistency check that relaxes the requirement on the minimum
distance of underlying error correcting code, while at the same time
achieving additive homomorphism. In addition, we consider a systematic
representation of the constructed codewords which allows us to save k
bits of communication per message when committing to random values.
Concretely, when considering commitments to 128 bits with statistical
security s = 40, our augmented scheme reduced communication by 2.6x
over the non-homomorphic version of [CDD+15] and 75x compared to
the homomorphic version of their scheme.

With the advent of an almost communication optimal XOR-homomorphic
commitment scheme it was natural to investigate the LEGO paradigm as an
immediate application. Starting from the MiniLEGO protocol [FJN+13] we
made several optimizations to increase concrete efficiency, resulting in the
protocol TinyLEGO [FJNT15]. Instantiated with the commitment scheme
of [FJNT16], and based on an analysis of the required communication of the
protocol it was conjectured that TinyLEGO could potentially be more efficient
than standard C&C protocols for practical and realistic circuit sizes. To
verify this claim, an implementation project was commenced with the goal of
determining the exact performance of the TinyLEGO protocol. The results of
that project is described in [NST17] which appeared at NDSS 2017 and forms
the basis for the fourth chapter of this dissertation.

Chapter 4 We further optimize and implement the TinyLEGO protocol to
investigate the practicality of LEGO. In addition to slightly modifying
the original protocol to support several levels of preprocessing, we also
propose a new efficient solution to the so-called selective OT-attack taking
advantage of the homomorphic commitments at our disposal. This new
technique requires a special OT primitive called F∆-ROT, or globally
correlated OT which is similar to the FROT functionality described in
Figure 2.2, but with the distinction that all produced OT-strings are
correlated with a global difference ∆.
The resulting implementation of TinyLEGO confirms the previous con-
jecture that the LEGO paradigm can indeed compete with, and in some
cases out-perform state-of-the-art protocols for the same setting. It is
also highlighted that one of the main strengths of LEGO is in the power
to preprocess most of the communication and computation, even without
knowledge of the function(s) to be computed.

1For any UC-secure commitment scheme it is known that the lower bound for both phases
is k.

8



1.2. Contributions and Timeline of the PhD Project

As an additional contribution we perform a tightened security analysis of
the best known construction of F∆-ROT [NNOB12, BLN+15], reducing
the concrete communication overhead of F∆-ROT by 5-6x. As a side-effect,
this has a direct impact on the performance of the GMW-like protocol
of [NNOB12, BLN+15] as F∆-ROT constitute one of the main building
blocks in that approach. Indeed, recent work has already taken advantage
of this optimization (and applied several others) in an effort to merge
the approaches of [NNOB12, BLN+15] with Yao’s garbled circuits to
further push the performance of maliciously secure computation forward
[KRW17b, KRW17a, HSSV17].

Having investigated the practical efficiency of TinyLEGO in detail, it was
concluded that LEGO was much more competitive than previously thought.
However, in terms of total running time the LEGO paradigm could still not
compare with the state-of-the-art protocols as it required ∼3x more commu-
nication for typical parameters and circuits. From the experiences obtained
in the engineering and development of the [NST17] implementation it was
apparent that the predominant cause of this overhead was due to the sheer
amount of commitments required, e.g. more than 400 million commitments
for 1024 AES-128 circuits. The above realization was the catalyst for the final
and culminating project of this PhD dissertation, entitled “DUPLO: Unifying
Cut-and-Choose for Garbled Circuits” [KNR+17] and is presented in our last
chapter.

Chapter 5 In this work we present a new approach to C&C of garbled
circuits inspired by the LEGO paradigm. Previous approaches have either
considered C&C on the circuit-level or gate-level, while our work can be
seen as a generalization that spans the entire continuum between these two
extremes. Specifically, we lift the idea of LEGO to any number of distinct
subcomponents of varying size. This has the major advantage of retaining
most of the efficiency of LEGO, while at the same time requiring far less
commitments. This is the case as there are now less overall input/output
wires to stitch together. Our experimental evaluations show that this
new approach scales better than any previous approach, yielding between
4-7x improvement on computations requiring several millions of gates.
For certain functions we therefore see that DUPLO outperforms both
multi-execution protocols and single-execution ones from moderate to
large-scaled computations, while still retaining the ability to perform
reactive computations.
In addition to the new protocol, we provide an extension to the Frigate
circuit compiler [MGC+16] to easily allow programmers to express their
functionality in a high-level C-style language. This is then compiled into
a subcomponent circuit representation that is suitable for our new C&C
technique.
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Chapter 2

Preliminaries

The goal of secure two-party computation can informally be described as
enabling two parties to compute a function in a black-box manner, meaning
each party only provides their respective input and receives back the output.
Another way of formulating this property is that the only information any
party should learn is the output of the computation (and its own input). In
order to formally argue about this property for a given cryptographic protocol
Π the simulation paradigm is typically used:

We say a two-party protocol Π is simulatable for a party P that inputs x if all
received data can be efficiently computed given the pair (x, z), where

z = f(x, y) and y is the input of the other party.

The above informal statement captures that the only thing learned from
participating in a protocol Π is the input and output (x, z), since everything else
in the protocol can be computed by knowledge of only this pair. The concept of
simulation was first introduced by Goldwasser and Micali in [GM84] specifically
for encryption schemes and was later extended to the more general interactive
setting in [GMW87]. In the following, we set up some useful notation which
enables us to formally describe how we prove security for secure two-party
computation protocols.

2.1 Notation
The following section is comprised of the notation sections of [FJNT16, NST17]
and has been copied nearly verbatim from those works.

We use κ and s to denote the computational and statistical security pa-
rameter, respectively. This means that for any fixed s and any polynomial
time bounded adversary, the advantage of the adversary is 2−s + negl(κ) for
a negligible function negl. In words, the advantage of any polynomial time
bounded adversary goes to 2−s faster than any inverse polynomial in the
computational security parameter. For two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗

11



2. Preliminaries

and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random variables we say these are com-
putationally indistinguishable, denoted by X c≈ Y , if for all z it holds that
|Pr[Xκ,z = 1]−Pr[Yκ,z = 1]| ≤ negl(κ). We write ≈ when the type of the indis-
tinguishability notion is arbitrary. In all our specific experiments throughout
the dissertation we set κ = 128 and s = 40.

We will use as shorthand [n] = {1, 2, . . . , n} and [i; j] ={i,i+ 1,i+ 2, . . ., j}.
We write e ∈R S to mean: sample an element e uniformly at random from the
finite set S. We will interchangeably use subscript and bracket notation to
denote an index of a vector, i.e. xi and x[i] denotes the i’th entry of a vector
x which we always write in bold. When r and m are vectors, we write r‖m
to mean the vector that is the concatenation of r and m. We write z ← P (x)
to mean: perform the (potentially randomized) procedure P on input x and
store the output in variable z. We use x := y to denote an assignment of x to
y. Furthermore we use πi,j to denote a projection of a vector that extracts the
entries from index i to index j, i.e. πi,j(x) = (xi, xi+1, . . . , xj). Additionally,
we use πl(x) = π1,l(x) as shorthand notation to denote the first l entries of x.

2.2 Universal Composability

The de facto standard for proving security of secure computation protocols
is the Universal Composability (UC) framework of [Can01] which in turn is
based on the previous works of [GL91, Bea92, MR92, Can96, Can00]. It is
defined using the Real World/Ideal World paradigm, which is based on the
concept of simulation. The ideal world IDEAL is characterized by the presence
of a non-corruptible ideal functionality F that carries out the task at hand for
the participating parties. The real world REAL does not allow for such an ideal
entity so instead the parties interact by following a cryptographic protocol
Π. Security is achieved by showing that REAL ≈ IDEAL and we then say that
Π UC-realizes F . In this case, using the protocol Π is as secure as using the
non-corruptible ideal functionality F . One informal way of seeing this type of
security definition, is to view F as a security specification that Π then satisfies.

The UC framework supports a powerful notion of composability. Indeed,
the composability theorem of [Can01] states that if a protocol Π UC-realizes
an ideal functionality F , it can replace the role of F in any system while
retaining all security properties. This is a tremendously important quality for
deployment in todays’ vast and interconnected computer systems, such as for
instance the Internet. Another benefit of composability is that of modularity,
as it allows us to split our often complex cryptographic protocols into smaller
logical parts that are easier to analyze separately. Once we have proven
security of such sub-functionalities in isolation we can combine them to solve
the original problem with confidence that the composed system is secure as
well. Specifically, this is done by modifying REAL to allow for the existence
of (sub) ideal functionalities G that the parties can make use of in order to
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realize the actual functionality F . When this is the case we say we are in the
G-Hybrid model which we denote HYBRIDG .

Adversarial Behavior

We also need to address how we model adversarial behavior. This is done
through the introduction of a new entity, the adversary A. Depending on
the security model the adversary is allowed a number of options of how to
attack either one of the parties running the protocol.1 Once a party has been
influenced by A we say it is corrupt and its past and future state becomes
known to A. Classically we consider two main types of adversaries:

Semi-Honest In this model, when the adversary corrupts a party it obtains
the current and future state of that entity. Specifically, the adversary is
not allowed to influence the corrupt party to deviate from the protocol
specification in any way. Thus the only “attack” possible in this model
is to try and learn more information than the allowed input/output
pair (x, z). This is a fairly weak type of security, but it still captures
meaningful scenarios. For instance, say a secure computation has been
carried out honestly, and at some later point in time one of the parties
gets corrupted by A. By semi-honest security it is now guaranteed that
this breach reveals no information to A except for the input/output
pair (x, z), as there is no way of influencing a protocol that has already
terminated.

Malicious In the stronger malicious model, in addition to learning the state
of the corrupt party, A is also allowed to “take control” and instruct
it to behave in any arbitrary way throughout the protocol execution.
Therefore when running a maliciously secure protocol the parties are
guaranteed that such an “online” attack cannot cause any extra leakage
beyond the allowed (x, z). As one would expect, malicious security is
typically harder to achieve than semi-honest security. This is because
extra work is usually needed from each party, in order to verify that no
one is deviating from the protocol specification.

More recently, the covert model [AL07] has also been introduced and can
be seen as offering security at a level in-between semi-honest and malicious.
In this setting, the adversary is allowed to instruct the corrupt party to cheat,
but it is then detected by the honest parties with probability at least ε (called
the deterrent factor) for 0 ≤ ε ≤ 1. The motivation for such a security model is
to capture applications where semi-honest security is too weak and malicious
security is unnecessarily strong. In order to achieve better performance, one

1Note that we only allow A to attack a single party since if both parties ever get
compromised security is always lost.
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can therefore construct a covertly secure protocol that satisfies the security
requirement but with much lower overhead than a maliciously secure one.

While the above notions model the capabilities of A once it has corrupted
a party, the question of when this corruption can take place has, up until this
point, not been addressed. In secure computation we typically allow for two
types of such corruption patterns:

Static In this case, the adversary is only allowed to pick which party to
corrupt before the protocol execution starts.

Adaptive In this stronger adaptive setting the adversary is allowed to wait
arbitrarily until choosing which party to corrupt. Therefore, the choice
can depend on the messages sent between the parties. Due to this
potential dependence, and other more technical reasons, adaptive security
is generally much harder to achieve than static security.

All protocols presented in this PhD dissertation are proven secure against
a static and malicious adversary.

UC Environment

Recall that the notion of UC security is based on REAL ≈ IDEAL. In order
for this to be well-defined we also need to address for whom these executions
look indistinguishable. In UC this role is played by the environment Z which
interacts with either an execution of REAL or IDEAL in a black-box manner by
giving input and receiving output. The idea is that Z models everything going
on outside the protocol execution and because we put no restrictions on Z it
can model any interconnected system. After Z has finished this interaction
it is tasked with deciding which world it actually interacted with. Security
is shown by proving that no Z can do much better than to guess, or more
specifically that it only succeeds in this experiment with probability at most
1/2 + negl(κ).

The above distinguisher role of Z is a common way of defining security in
most areas of cryptology. What is particular about the UC setting however,
and the reason for the strong security that it provides, is that the adversary A
and the environment Z are allowed to communicate continuously throughout
the experiment. This makes the security proof significantly harder as the run
of REAL and IDEAL need to look identical at all times as else this would be
detected by Z. In contrast, security in the weaker stand-alone model only
requires that the executions look indistinguishable at the end of the experiment.
This is technically enforced by A not being allowed to communicate with the
distinguisher. See e.g. [HL10] for a thorough treatment of stand-alone two-
party computation.
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Figure 2.1: Illustration of the UC framework with corrupt P1 for a protocol Π
UC-realizing F in the G-hybrid model.

Simulation

The simulator S constitutes the last entity in the UC framework. As part
of the proof of security (that Π securely realizes F), a concrete simulator is
described that plays the role of any corrupt party in IDEAL. It is then the
job of the simulator to ensure that IDEAL ≈ REAL from Z’s point of view, no
matter the instructions given by A. In doing so, S communicates with the
ideal functionality F on behalf of the corrupted party, say P1 for concreteness.
To keep A (and thus Z) from noticing the simulation, S emulates an execution
of the protocol Π playing the role of a “dummy” P2 which interacts with the
corrupted P1. In order to prove UC security this emulated protocol execution
must look indistinguishable to REAL given the prescribed input x for P1, even
though A might be instructing P1 to use a different input x′. If the protocol
in question is described in a hybrid world HYBRIDG , then S has full control
of the (sub) ideal functionality G available to the parties running Π. This
advantage is typically the reason why the simulator can succeed in its task, as
from controlling G it is often possible to extract the effective input x′. After
this extraction, S can forward x′ to F in order to learn z. In addition, a correct
extraction of x′ ensures that the non-corrupt party, P2, outputs the same value
in both HYBRIDG and IDEAL (i.e. that z = z′ in the specific example). In
Figure 2.1 this scenario is pictorially described for a corrupt P1.

Setup Assumptions. It is known that most “interesting” ideal functionali-
ties, such as UC-secure commitments or OT cannot be obtained in the plain
model [CF01]. In order to overcome this impossibility, UC-secure protocols
require some kind of setup assumption that models a resource that is available
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FROT interacts with a sender Ps, a receiver Pr and an adversary S and it proceeds
as follows:

Transfer: Upon receiving (transfer, sid, otid, k) from both Ps and Pr, for-
ward this message to S and wait for a reply. If S sends back
(no-corrupt, sid, otid), sample l0, l1 ∈R {0, 1}k and b ∈R {0, 1} and out-
put (deliver, sid, otid, (l0, l1)) to Ps and (deliver, sid, otid, (lb, b)) to
Pr.
If S instead sends back (corrupt-sender, sid, otid, (l̃0, l̃1)) or
(corrupt-receiver, sid, otid, (l̃b̃, b̃)) and the sender, respectively
the receiver is corrupted, proceed as above, but instead of sampling all
values at random, use the values provided by S.

Figure 2.2: Ideal Functionality FROT. Originally appearing in [FJNT16].

to the parties before the execution starts. Therefore the starting point for a
UC protocol is usually in some form of G-hybrid model. In this dissertation
our starting point is in the FROT-hybrid model upon which we build a UC
secure commitment scheme and several UC secure 2PC protocols. We describe
the behavior of FROT in Figure 2.2. For completeness the FROT functionality
can be efficiently UC-realized by e.g. the protocols of [PVW08] (relying on the
setup assumption of a common reference string) and by using the OT-extension
techniques of [Bea96, IKNP03, Nie07, NNOB12, Lar15, ALSZ15, KOS15].

Formal Definition

Having introduced all the entities in the UC framework we now summarize
the above concepts in more formal and precise terms. In the following, we
consider only the case of two parties and computational security. However we
stress that the full framework supports an arbitrary amount of participating
parties and other notions of security such as statistical and perfect. It was
shown in [Cle86] that fairness and guaranteed output delivery is in general
impossible to achieve for two-party protocols. Therefore, since all protocols
in this dissertation fall into this category we allow A the ability to abort the
execution at any time in the below definition, potentially, even before the
non-corrupt party receives the output.

For a given protocol Π, we start by defining the random variables

HYBRIDGΠ,A,i,Z(x, y, κ), IDEALF ,S,i,Z(x, y, κ)

denoting the hybrid and ideal execution experiments. The output of these
variables is the guess bit of Z where i ∈ {1, 2} specifies the party A corrupts,
x, y ∈ {0, 1}∗ are the inputs provided to P1 and P2, respectively, and κ ∈ N
is the security parameter. Randomness is taken over the random coins of the
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participating parties. This leads to the definition of the ensembles

HYBRIDGΠ,A,i,Z =
{

HYBRIDGΠ,A,i,Z(x, y, κ)
}
x,y∈{0,1}∗,κ∈N

IDEALF ,S,i,Z = {IDEALF ,S,i,Z(x, y, κ)}x,y∈{0,1}∗,κ∈N

Finally, we assume that P1 and P2 always communicate over an authenti-
cated channel, meaning that A and S can see the exchanged messages, but
is unable to modify them (unless it is sent by a corrupt party). Further, it is
implicitly the case that the parties enhance the communication channel to also
guarantee confidentiality by adding symmetric-key encryption.2 This implies
that if there are no active corruptions, A cannot read or change any message,
making simulation trivial for this case. With the above terminology in place
we define UC-security for our particular setting as follows:

Definition 1 (Static, Malicious 2-party UC-Security). A protocol Π securely
realizes a functionality F with abort in the G-hybrid world if for every proba-
bilistic polynomial-time malicious and static adversary A in the hybrid world,
there exists a probabilistic polynomial-time simulator S for the ideal world
such that for i ∈ {0, 1}:

HYBRIDGΠ,A,i,Z
c≈ IDEALF ,S,i,Z

For a more detailed treatment of the UC-framework we refer the reader to
[Can01].

2As we are in the computational setting, this is straight-forward to achieve.
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Chapter 3

On the Complexity of
Additively Homomorphic UC
Commitments

The following chapter is based on the work of [FJNT16] and is therefore
identical (except for minor layout modifications) to the current full version
available at https://eprint.iacr.org/2015/694.

3.1 Introduction
Commitment schemes are the digital equivalent of a securely locked box: it
allows a sender Ps to hide a secret from a receiver Pr by putting the secret
inside the box, sealing it, and sending the box to Pr. As the receiver cannot look
inside we say that the commitment is hiding. As the sender is unable to change
his mind as he has given the box away we say the commitment is also binding.
These simple, yet powerful properties are needed in countless cryptographic
protocols, especially when guaranteeing security against a malicious adversary
who can arbitrarily deviate from the protocol at hand. In the stand-alone
model, commitment schemes can be made very efficient, both in terms of
communication and computation and can be based entirely on the existence
of one-way functions. These can e.g. be constructed from cheap symmetric
cryptography such as pseudorandom generators [Nao90].

In this work we give an additively homomorphic commitment scheme secure
in the UC-framework of [Can01], a model considering protocols running in
a concurrent and asynchronous setting. The first UC-secure commitment
schemes were given in [CF01, CLOS02] as feasibility results, while in [CF01] it
was also shown that UC-commitments cannot be instantiated in the standard
model and therefore require some form of setup assumption, such as a CRS.
Moreover a construction for UC-commitments in such a model implies public-
key cryptography [DG03]. Also, in the UC setting the previously mentioned
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hiding and binding properties are augmented with the notions of equivocality
and extractability, respectively. These properties are needed to realize the
commitment functionality we introduce later on. Loosely speaking, a scheme is
equivocal if a single commitment can be opened to any message using special
trapdoor information. Likewise a scheme is extractable if from a commitment
the underlying message can be extracted efficiently using again some special
trapdoor information.

Based on the above it is not surprising that UC-commitments are signif-
icantly less efficient than constructions in the stand-alone model. Neverthe-
less a plethora of improvements have been proposed in the literature, e.g.
[DN02, NFT09, Lin11, BCPV13, Fuj14, CJS14] considering different number
theoretic hardness assumptions, types of setup assumption and adversarial
models. Until recently, the most efficient schemes for the adversarial model
considered in this work were that of [Lin11, BCPV13] in the CRS model and
[HMQ04, CJS14] in different variations of the random oracle model [BR93].

Related Work. In [GIKW14] and independently in [DDGN14] it was con-
sidered to construct UC-commitments in the OT-hybrid model and at the
same time confining the use of the OT primitive to a once-and-for-all setup
phase. After the setup phase, the idea is to only use cheap symmetric primi-
tives for each commitment thus amortizing away the cost of the initial OTs.
Both approaches strongly resembles the “MPC-in-the-head” line of work of
[IKOS07, HIKN08, IPS08] in that the receiver is watching a number of commu-
nication channels not disclosed to the sender. In order to cheat meaningfully
in this paradigm the sender needs to cheat in many channels, but since he is
unaware where the receiver is watching he will get caught with high probabil-
ity. Concretely these schemes build on VSS and allow the receiver to learn
an unqualified set of shares for a secret s. However the setup is such that
the sender does not know which unqualified set is being “watched”, so when
opening he is forced to open to enough positions with consistent shares to
avoid getting caught. The scheme of [GIKW14] focused primarily on the rate
of the commitments in an asymptotic setting while [DDGN14] focused on the
computational complexity. Furthermore the secret sharing scheme of the latter
is based on Reed-Solomon codes and the scheme achieved both additive and
multiplicative homomorphisms.

The idea of using OTs and error correction codes to realize commitments
was also considered in [FJN+13] in the setting of two-party secure computation
using garbled circuits. Their scheme also allowed for additively homomorphic
operations on commitments, but requires a code with a specific privacy property.
The authors pointed to [CC06] for an example of such a code, but it turns out
this achieves quite low constant rate due to the privacy restriction. Care also
has to be taken when using this scheme, as binding is not guaranteed for all
committed messages. The authors capture this by allowing some message to
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be “wildcards”. However, in their application this is acceptable and properly
dealt with.

In [CDD+15] a new approach to the above OT watch channel paradigm
was proposed. Instead of basing the underlying secret sharing scheme on
a threshold scheme the authors proposed a scheme for a particular access
structure. This allowed realization of the scheme using additive secret sharing
and any linear code, which achieved very good concrete efficiency. The only
requirement of the code is that it is linear and the minimum distance is at
least 2s + 1 for statistical security s. To commit to a message m it is first
encoded into a codeword c. Then each field element ci of c is additively shared
into two field elements c0

i and c1
i and the receiver learns one of these shares

via an oblivious transfer. This in done in the watch-list paradigm where the
same shares c0

i are learned for all the commitments, by using the OTs only to
transfer short seeds and then masking the share c0

i and c1
i for all commitments

from these pairs of seeds. This can be seen as reusing an idea ultimately going
back to [Kil88, CvT95]. Even if the adversary commits to a string c′ which is
not a codeword, to open to another message, it would have to guess at least s
of the random choice bits of the receiver. Furthermore the authors propose
an additively homomorphic version of their scheme, however at the cost of
using VSS which imposes higher constants than their basic non-homomorphic
construction.

Finally in the very recent work of [CDD+16] the asymptotics of our proposed
commitment scheme are improved as the authors give a protocol for additively
homomorphic commitments that achieves linear time and close to rate 1. This
work does not achieve the linear time property. Their protocol is however very
similar in design to both [CDD+15] and the one presented here, but constructs
and uses a binary linear time encodable code with non-trivial distance and
rate close to 1 to achieve the mentioned results.

Motivation. As already mentioned, commitment schemes are extremely
useful when security against a malicious adversary is required. With the added
support for additively homomorphic operations on committed values even
more applications become possible. One is that of maliciously secure two-party
computation using the LEGO protocols of [NO09, FJN+13, FJNT15]. These
protocols are based on cut-and-choose of garbled circuits and require a large
amount of homomorphic commitments, in particular one commitment for each
wire of all garbled gates. In a similar fashion the scheme of [AHMR15] for secure
evaluation of RAM programs also make use of homomorphic commitments
to transform garbled wire labels of one garbled circuit to another. Thus
any improvement in the efficiency of homomorphic commitments is directly
transferred to the above settings as well.
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Our Contribution. We introduce a new, very efficient, additively homomor-
phic UC-secure commitment scheme in the FROT-hybrid model. Our scheme
shows that:

1. The asymptotic complexity of additively homomorphic UC commitment
is the same as the asymptotic complexity of non-homomorphic UC
commitment, i.e., the achievable rate is 1 − o(1). In particular, the
homomorphic property comes for free.

2. In addition to being asymptotically optimal, our scheme is also more
practical (smaller hidden constants) than any other existing UC commit-
ment scheme, even non-homomorphic schemes and even schemes in the
random oracle model.

In more detail our main contributions are as follows:

– We improve on the basic non-homomorphic commitment scheme of
[CDD+15] by reducing the requirement of the minimum distance of the
underlying linear code from 2s + 1 to s for statistical security s. At
the same time our scheme becomes additively homomorphic, a property
not shared with the above scheme. This is achieved by introducing an
efficient consistency check at the end of the commit phase, as described
now. Assume that the corrupted sender commits to a string c′ which has
Hamming distance 1 to some codeword c0 encoding message m0 and has
Hamming distance s− 1 to some other codeword c1 encoding message
m1. For both the scheme in [CDD+15] and our scheme this means the
adversary can later open to m0 with probability 1/2 and to m1 with
probability 2−s+1. Both of these probabilities are considered too high
as we want statistical security 2−s. So, even if we could decode c′ to for
instancem0, this might not be the message that the adversary will open to
later. It is, however, the case that the adversary cannot later open to both
m0 and m1, except with probability 2−s as this would require guessing s
of the random choice bits. The UC simulator, however, needs to extract
which of m0 and m1 will be opened to already at commitment time.
We introduce a new consistency check where we after the commitment
phase ask the adversary to open 2s random linear combinations of the
committed purported codewords. These linear combinations will with
overwhelming probability in a well defined manner “contain” information
about every dirty codeword c′ and will force the adversary to guess some
of the choice bits to successfully open them to some close codeword c.
The trick is then that the simulator can extract which of the choice bits
the adversary had to guess and that if we puncture the code and the
committed strings at the positions at which the adversary guessed the
choice bits, then the remaining strings can be proven to be codewords in
the punctured code. Since the adversary guesses at most s−1 choice bits,
except with negligible probability 2−s we only need to puncture s − 1
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positions, so the punctured code still has distance 1. We can therefore
erasure decode and thus extract the committed message. If the adversary
later open to another message he will have to guess additional choice
bits, bringing him up to having guessed at least s choice bits. With the
minimal distance lowered the required code length is also reduced and
therefore also the amount of required initial OTs. As an example, for
committing to messages of size k = 256 with statistical security s = 40
this amounts to roughly 33% less initial OTs than required by [CDD+15].

– We furthermore propose a number of optimizations that reduce the com-
munication complexity by a factor of 2 for each commitment compared to
[CDD+15] (without taking into account the smaller code length required).
We give a detailed comparison to the schemes of [Lin11, BCPV13, CJS14]
and [CDD+15] in Section 3.4 and show that for the above setting with
k = 256 and s = 40 our new construction outperforms all existing schemes
in terms of communication if committing to 319 messages or more while
retaining the computational efficiency of [CDD+15]. This comparison
includes the cost of the initial OTs. If committing to 10,000 messages or
more we see the total communication is around 1/3 of [BCPV13], around
1/2 of the basic scheme of [CDD+15] and around 1/21 of the homomorphic
version.

– Finally we give an extension of any additively homomorphic commitment
scheme that achieves an amortized rate close to 1 in the opening phase.
Put together with our proposed scheme and breaking a long message into
many smaller blocks we achieve rate close to 1 in both the commitment
and open phase of our protocol. This extension is interactive and is very
similar in nature to the introduced consistency check for decreasing the
required minimum distance. Although based on folklore techniques this
extension allows for very efficiently homomorphic commitment to long
messages without requiring correspondingly many OTs.

3.2 The Protocol

In Figure 3.1 we present the ideal functionality FHCOM that we UC-realize in
this work. The functionality differs from other commitment functionalities in
the literature by only allowing the sender Ps to decide the number of values
he wants to commit to. The functionality then commits him to random values
towards a receiver Pr and reveals the values to Ps. The reason for having the
functionality commit to several values at a time is to reflect the batched nature
of our protocol. That the values committed to are random is a design choice
to offer flexibility for possible applications. In Section 3.5 we show an efficient
black-box extension of FHCOM to chosen-message commitments.
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FHCOM interacts with a sender Ps, a receiver Pr and an adversary S, working over
a finite field F.

Init: Upon receiving a message (init, sid, k) from both parties Ps and Pr, store
the message length k.

Commit: Upon receiving a message (commit, sid, γ) from Ps, forward this mes-
sage to S and wait for a reply. If S sends back (no-corrupt, sid) proceed
as follows:
Sample γ uniformly random values rj ∈ Fk and associate to each of these a
unique unused identifier j and store the tuple (random, sid, j, rj). We let J
denote the set of these identifiers. Finally send (committed, sid,J , {rj}j∈J )
to Ps and (receipt, sid,J ) to Pr and S.
If Ps is corrupted and S instead sends back (corrupt-commit, sid, {r̃j}j∈J ),
proceed as above, but instead of sampling the values at random, use the
values provided by S.

Open: Upon receiving a message (open, sid, {(c, αc)}c∈C) from Ps, if for all
c ∈ C, a tuple (random, sid, c, rc) was previously recorded and αc ∈ F, send
(opened, sid, {(c, αc)}c∈C ,

∑
c∈C αc · rc) to Pr and S. Otherwise, ignore.

Figure 3.1: Ideal Functionality FHCOM.

Protocol ΠHCOM

Our protocol ΠHCOM is cast in the FROT-hybrid model, meaning the parties
are assumed access to the ideal functionality FROT in Figure 2.2. The protocol
UC-realizes the functionality FHCOM and is presented in full in Figure 3.3 and
Figure 3.4. At the start of the protocol a once-and-for-all Init step is performed
where Ps and Pr only need to know the size of the committed values k and
the security parameters. We furthermore assume that the parties agree on a
[n, k, d] linear code C in systematic form over the finite field F and require that
the minimum distance d ≥ s for statistical security parameter s. The parties
then invoke n copies of the ideal functionality FROT with the computational
security parameter κ as input, such that Ps learns n pairs of κ-bit strings l0i , l1i
for i ∈ [n], while Pr only learns one string of each pair. In addition to the
above the parties also introduce a commitment counter T which simply stores
the number of values committed to. Our protocol is phrased such that multiple
commitment phases are possible after the initial ROTs have been performed,
and the counter is simply incremented accordingly.

Next a Commit phase is described where at the end, Ps is committed
to γ pseudorandom values. The protocol instructs the parties to expand the
previously learned κ-bit strings, using a pseudorandom generator PRG, into row-
vectors s̄bi ∈ FT +γ+2s for b ∈ {0, 1} and i ∈ [n]. The reason for the extra 2s com-
mitments will be apparent later. We denote by J = {T + 1, . . . , T + γ + 2s}
the set of indices of the γ + 2s commitments being setup in this invocation
of Commit. After the expansion Ps knows all of the above 2n row-vectors,
while Pr only knows half. The parties then view these row-vectors as matrices
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Generation of commitments

→l01

l11

l02

l12

l0n

l1n

PRG

→
→
→

κ

→
→
→
→

→
→
→
→

→
→
→
→

sss1T +1 sss1T +2 sss1T +3 sss1T +γ+2s

sss0T +1 sss0T +2 sss0T +3 sss0T +γ+2s

+
=

sss0j sss1j

k

n− k

rrr0j rrr1j

ccc0j

tttj

rrrj

s̄̄s̄s01

s̄̄s̄s02

s̄̄s̄s0n

s̄̄s̄s11

s̄̄s̄s12

s̄̄s̄s1n

sss0T +γ

sss1T +γ

SSS0

SSS1

Figure 3.2: On the left hand side we see how the initial part of the Com-
mit phase of ΠHCOM is performed by Ps when committing to γ messages.
On the right hand side we look at a single column of the two matrices
S0,S1 and how they define the codeword tj for column j ∈ J , where
J = {T + 1, . . . , T + γ + 2s}.

S0 and S1 where row i of Sb consists of the vector s̄bi . We let sbj ∈ Fn denote
the j’th column vector of the matrix Sb for j ∈ J . These column vectors now
determine the committed pseudorandom values, which we define as rj = r0

j +r1
j

where rbj = πk(sbj) for j ∈ J . The above steps are also pictorially described in
Figure 3.2.

The goal of the commit phase is for Pr to hold one out of two shares of
each entry of a codeword of C that encodes the vector rj for all j ∈ J . At
this point of the protocol, what Pr holds is however not of the above form.
Though, because the code is in systematic form we have by definition that
Pr holds such a sharing for the first k entries of each of these codewords.
To ensure the same for the rest of the entries, for all j ∈ J , Ps computes
tj ← C(rj) and lets c0

j = πk+1,n(s0
j ). It then computes the correction value

c̄j = πk+1,n(tj)− c0
j − πk+1,n(s1

j ) and sends this to Pr. Figure 3.2 also gives a
quick overview of how these vectors are related.

When receiving the correction value c̄j , we notice that for the columns
s0
j and s1

j , Pr knows only the entries wij = sbij [i] where bi is the choice-bit it
received from FROT in the i’th invocation. For all l ∈ [n− k], if bk+l = 1 it is
instructed to update its entry as follows:

wk+l
j := c̄j [l] + wk+l

j = tj [k + l]− c0
j [l]− s1

j [k + l] + wk+l
j = tj [k + l]− c0

j [l] .

Due to the above corrections, it is now the case that for all l ∈ [n − k] if
bk+l = 0, then wk+l

j = c0
j [l] and if bk+l = 1, wk+l

j = tj [k + l] − c0
j [l]. This

means that at this point, for all j ∈ J and all i ∈ [n], Pr holds exactly one
out of two shares for each entry of the codeword tj that encodes the vector rj .
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The Open procedure describes how Ps can open to linear combinations
of previously committed values. We let C be the indices to be opened and
αc for c ∈ C be the corresponding coefficients. The sender then computes
r0 =

∑
c∈C αc · r0

c , r1 =
∑
c∈C αc · r1

c , and c0 =
∑
c∈C αc · c0

c and sends
these to Pr. When receiving the three values, the receiver computes the
codeword t ← C(r0 + r1) and from c0 and t it computes c1. It also computes
w =

∑
c∈C αc ·wc and verifies that r0, r1, c0, and c1 are consistent with these.

If everything matches it accepts r0 + r1 as the value opened to.
If the sender Ps behaves honestly in Commit of ΠHCOM, then the scheme is

UC-secure as it is presented until now. In fact it is also additively homomorphic
due to the linearity of the code C and the linearity of additive secret sharing.
However, this only holds because Pr holds shares of valid codewords. If we
consider a malicious corruption of Ps, then the shares held by Pr might not
be of valid codewords, and then it is undefined at commitment time what the
value committed to is. To see this consider a corrupt Ps that sends shares so
that Pr holds shares of something that has e.g. distance d− 1 to one codeword
and distance 1 to another. Then it can open to any one of these values at a
later time (although not both) with probability 1− 2−d+1 or 1− 2−1, neither
of which are negligible when d ≥ s. To achieve UC-security for a commitment
scheme, the committed values need to be well-defined and extractable for a
polynomial time simulator S at commitment time. It is therefore crucial for
guaranteeing extractability that the shares Pr holds are in fact shares of a
codeword, or ensure that he can only open successfully to a single well-defined
codeword. In the following section we explain how our protocol ensures this.

Optimizations over [CDD+15]

The work of [CDD+15] describes two commitment schemes, a basic and a
homomorphic version. For both schemes therein the above issue of sending
correct shares is handled by requiring the underlying code C with parameters
[n, k, d] to have minimum distance d ≥ 2s+ 1, as then the committed values
are always defined to be the closest valid codewords of the receivers shares.
This is however not enough to guarantee binding when allowing homomorphic
operations. To support this, the authors propose a version of the scheme
that involves the sender Ps running a “MPC-in-the-head” protocol based on
a verifiable secret sharing scheme of which the views of the simulated parties
must be sent to Pr.

Up until now the scheme we have described is very similar to the basic
scheme of [CDD+15]. The main difference is the use of FROT as a starting
assumption instead of FOT and the way we define and send the committed
value corrections. In [CDD+15] the corrections sent are for both the 0 and the
1 share. This means they send 2n field elements for each commitment in total.
Having the code in systematic form implies that for all j ∈ J and i ∈ [k] the
entries wi

j are already defined for Pr as part of the output of the PRG, thus

28



3.2. The Protocol

ΠHCOM describes a protocol between a sender Ps and a receiver Pr. We let
PRG : {0, 1}κ → Fpoly(κ) be a pseudorandom generator with arbitrary polynomial
stretch taking a κ-bit seed as input and outputting elements of a predetermined
finite field F.

Init:
1. On common input (init, sid, k) we assume the parties agree on a linear

code C in systematic form over F with parameters [n, k, d]. The parties also
initialize an internal commitment counter T = 0.

2. For i ∈ [n], both parties send (transfer, sid, i, κ) to FROT. It replies with
(deliver, sid, i, (l0i , l1i )) to Ps and (deliver, sid, i, (lbi

i , bi)) to Pr.
Commit:

1. On common input (commit, sid, γ), for i ∈ [n], both parties use PRG to
extend their received seeds into vectors of length T + γ + 2s. These are
denoted s̄0

i , s̄
1
i ∈ FT+γ+2s where Ps knows both and Pr knows s̄bi

i . Next
define the matrices S0,S1 ∈ Fn×(T+γ+2s) such that for i ∈ [n] the i’th row
of Sb is s̄bi for b ∈ {0, 1}.

2. Let J = {T + 1, . . . , T + γ + 2s}. For j ∈ J let the column vector of these
matrices be s0

j , respectively s1
j . For b ∈ {0, 1}, Ps lets rbj = πk(sbj) and lets

rj = r0
j + r1

j . Also Pr lets wj = (w1
j , . . . , w

n
j ) and (b1, . . . , bn) ← b where

wij = sbi
j [i] for i ∈ [n].

3. For j ∈ J , Ps computes tj ← C
(
rj
)
and lets c0

j = πk+1,n(s0
j). It then

computes the correction value c̄j = πk+1,n(tj)− c0
j − πk+1,n(s1

j ).
4. Finally Ps sends the set

{
c̄j
}
j∈J to Pr. For l ∈ [n − k] if bk+l = 1, Pr

updates wk+l
j := c̄j [l] + wk+l

j .

Consistency Check
5. For g ∈ [2s] Pr samples xg1, . . . , xgγ ∈R F and sends these to Ps.
6. Ps then computes

r̃0
g = r0

T +γ+g +
γ∑
j=1

xgjr
0
T +j , r̃1

g = r1
T +γ+g +

γ∑
j=1

xgjr
1
T +j ,

c̃0
g = c0

T +γ+g +
γ∑
j=1

xgjc
0
T+j

and sends the 2s tuples (r̃0
g , r̃

1
g , c̃

0
g) to Pr.

Figure 3.3: Protocol ΠHCOM UC-realizing FHCOM in the FROT-hybrid model –
part 1.
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Commit (continued):

7. For g ∈ [2s] Pr computes w̃g = wT +γ+g +
∑γ
j=1 x

g
jwT+j and t̃g ←

C
(
r̃0
g + r̃1

g

)
. It lets c̃g ← πk+1,n(t̃g) and lets c̃1

g = c̃g − c̃0
g. Finally for

u ∈ [k] and v ∈ [n− k], Pr verifies that

r̃bu
g [u] = w̃g[u] , c̃bk+v

g [v] = w̃g[k + v] .

If any of the 2s checks fail Pr outputs abort and halts.

Output
8. Both parties increment their local counter T := T + γ. Ps now

holds opening information
{

(r0
j , r

1
j , c

0
j )
}
j∈[T ] and Pr holds the verify-

ing information
{

wj

}
j∈[T ]. Let J = J \ {T + γ + 2s}. Ps outputs

(committed, sid,J , {rj}j∈J ) and Pr outputs (receipt, sid,J ).a

Open:
1. On input (open, sid, {(c, αc)}c∈C) where each αc ∈ F, if for all c ∈ C, Ps

holds (r0
c , r

1
c , c

0
c) it computes

r0 =
∑
c∈C

αc · r0
c , r1 =

∑
c∈C

αc · r1
c , c0 =

∑
c∈C

αc · c0
c

and sends (opening, {c, αc}c∈C , (r0, r1, c0)) to Pr. Else it ignores the input
message.

2. Upon receiving the message (opening, {c, αc}c∈C , (r0, r1, c0)) from Ps, if
for all c ∈ C, Pr holds wc it lets r = r0 + r1 and computes

w =
∑
c∈C

αc ·wc, t ← C(r) .

It lets c = πk+1,n(t) and computes c1 = c − c0.
Finally for i ∈ [k] and l ∈ [n− k], Pr verifies that

rbi [i] = w[i] , cbk+l [l] = w[k + l] .

If all checks are valid Pr outputs (opened, sid, {(c, αc)}c∈C , r). Else it
aborts and halts.

aFor clarity we assume that Ps and Pr locally discard the 2s extra commitments
used for blinding. This includes the bookkeeping of the index offset this creates when
generating multiple batches.

Figure 3.4: Protocol ΠHCOM UC-realizing FHCOM in the FROT-hybrid model –
part 2.
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saving 2k field elements of communication per commitment. Together with only
sending corrections to the 1-share, we only need to send n− k field elements
as corrections. Meanwhile this only commits the sender to a pseudorandom
value, so to commit to a chosen value another correction of k elements needs
to be sent. In total we therefore save a factor 2 of communication from these
optimizations.

However the main advantage of our approach comes from ensuring that
the shares held by Pr binds the sender Ps to his committed value, while only
requiring a minimum distance of s. On top of that our approach is also
additively homomorphic. The idea is that Pr will challenge Ps to open 2s
random linear combinations of all the committed values and check that these
are valid according to C. Recall that γ + 2s commitments are produced in
total. The reason for this is to guarantee hiding for the commitments, even
when Pr learns a random linear combinations of these. Therefore, each linear
combination is “blinded” by a pseudorandom value only used once and thus
it appears pseudorandom to Pr as well. This is the reason committing to 2s
additional values for each invocation of Commit.

The intuition why the above approach works is that if the sender Ps sends
inconsistent corrections, it will get challenged on these positions with high
probability. In order to pass the check, Ps must therefore guess which choice-bit
Pr holds for each position for which it sent inconsistent values. The random
linear combinations therefore force Ps to make a decision at commitment
time which underlying value to send consistent openings to, and after that
it can only open to that value successfully. In fact, the above approach also
guarantees that the scheme is homomorphic. This is because all the freedom
Ps might have had by sending maliciously constructed corrections is removed
already at commitment time for all values, so after this phase commitments
and shares can be added together without issue.

To extract all committed values when receiving the openings to the linear
combinations the simulator identifies which rows of S0 and S1 Ps is sending
inconsistent shares for. For these positions it inserts erasures in all positions
of tj (as defined by S0,S1, c̃j and C). As there are at most s − 1 positions
where Ps could have cheated and the distance of the linear code is d ≥ s the
simulator can erasure decode all columns to a unique value, and this is the
only value Ps can successfully open to.1

Protocol Extension

The protocol ΠHCOM implements a commitment scheme where the sender
commits to pseudorandom values. In many applications however it is needed
to commit to chosen values instead. It is know that for any UC-secure
commitment scheme one can easily turn a commitment from a random value

1All linear codes can be efficiently erasure decoded if the number of erasures is ≤ d− 1.
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into a commitment of a chosen one using the random value as a one-time pad
encryption of the chosen value. For completeness, in Section 3.5, we show this
extension for any protocol implementing FHCOM.

In addition we also highlight that all additively homomorphic commitment
schemes support the notion of batch-opening. For applications where a large
amount of messages need to be opened at the same time this has great
implications on efficiency. The technique is roughly that Ps sends the values he
wants to open directly to Pr. To verify correctness the receiver then challenges
the sender to open to ŝ = s/log2(|F|) random linear combinations of the received
messages. It is easy to see that if for any commitment the sender sent a message
different from the committed one, then a random linear combination of the
commitments will commit to a message different from the same random linear
combination of the claimed message except with probability 1/|F|. Therefore
the sender is caught except with probability (1/|F|)ŝ = 2−s. Using this method
the overhead of opening the commitments is independent of the number of
messages opened to and therefore amortizes away in the same manner as the
consistency check and the initial OTs. However this way of opening messages
has the downside of making the opening phase interactive, which is not optimal
for all applications. See Section 3.5 for details.

The abovementioned batch-opening technique also has applicability when
committing to large messages. Say we want to commit to a message m of
length M . The naive approach would be to instantiate our scheme using a
[nM ,M, s] code. However this would require nM ≥ M initial OTs and in
addition only achieve rate M/(M+nM ) ≥ 1/2 in the opening phase. Instead of
the above, the idea is to break the large message of length M into blocks of
length l for l << M . There will now be N = dM/le of these blocks in total. We
then instantiate our scheme with a [ns, l, s] code and commit to m in blocks of
size l. When required to open we use the above-mentioned batch-opening to
open all N blocks of m. It is clear that the above technique remains additively
homomorphic for commitments to the large messages. In [GIKW14] they show
an example for messages of size 230 where they achieve rate 1.046−1 ≈ 0.95 in
both the commit and open phase. In Section 3.5 we apply our above approach
to the same setting and conclude that in the commit phase we achieve rate
≈ 0.974 and even higher in the opening phase. This is including the cost of
the initial OTs.

3.3 Security

In this section we prove the following theorem.

Theorem 1. The protocol ΠHCOM in Figure 3.3 and Figure 3.4 UC-realizes
the FHCOM functionality of Figure 3.1 in the FROT-hybrid model against any
number of static corruptions.
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In the proof we will need a technical lemma, which we state and prove first.
Let F be a finite field and let C be a F-linear code with parameters [n, k, d].
Let C�m ⊂ Fn×m consist of the set of matrices for which each column is from
C. We can think of C�m as a linear code of length n with symbols from Fm.
For a matrix M ∈ Fn×m we use ‖M‖0 to denote the number of rows of M
which are not all-zero. This is also the Hamming weight of M when viewed
as a n long vector of m-bit symbols. The minimum distance of C�m is then
d′ = min{‖M‖0 |M ∈ C�m}. It is easy to see that d′ ≥ d.

We can view each matrix H ∈ Fm×` as specifying a linear function H :
Fn×` → Fn×m by M 7→ M ◦ H>, where ◦ denotes matrix product and >
denotes transposition of a matrix; We write M ′ = H(M). Notice that if
M ∈ C�` and M ′ = H(M), then M ′ ∈ C�m.

For a matrixM ∈ Fn×m we letDC(M) = {D ∈ Fn×m\C�m |M+D ∈ C�m}
denote the set of possible errors D that would explainM as a codeword plus the
error D. For a matrix D ∈ Fn×m we let δ(D) ⊆ [n] be the set which contains
i iff row i in D is not all-zero. We let ∆C(M) = {δ(D) | D ∈ DC(M)}. This
is the set of possible error positions E that would explain M as a codeword
plus errors in the rows i ∈ E. We let dC(M) = min{|E| | E ∈ ∆C(M)} with
δC(M) = 0 if M ∈ C�m. This is the Hamming distance of M to the code C�m.

Lemma 1. There exist a property P : F2d×` × Fn×` → {⊥,>} such that for
all H ∈ F2d×` and all M ∈ Fn×` one of the following conditions are true:

1. P (H,M) = >,
2. ∆C(H(M)) ⊆ ∆C(M),
3. δC(H(M)) ≥ d.

Furthermore, for a fixedM ∈ Fn×` and a uniformly random H ∈ F2d×` it holds
that P (H,M) = > with probability at most 2−d.

In words the lemma says that if you fix a matrix M ∈ Fn×` and pick a
uniformly random matrix H ∈ F2d×` and compute M ′ = H(M) ∈ Fn×2d, then
except with probability 2−d the result M ′ will have maximal distance d to
C�2d or any subset of rows E ⊆ [n] which allows to see all the columns of M ′
as codewords plus errors only in rows i ∈ E will have the property that we
can also see all the columns of M as codewords plus errors only in rows i ∈ E.
If we have ` > 2d this therefore gives us a way to boil down all the errors in
M into the much shorter M ′.

Proof of Lemma 1. First note that each H ∈ F2d×` can be seen as a function
H : F` → F2d by x 7→ Hx. It is well known and easy to check that if we sample
a uniformly randomH ∈ F2d×`, then we have a 2-universal hash function family,
which means that it in particular is a 0-almost 2-universal hash function family.
Then use Theorem 1 from [CDD+16] with t = 0.

33



3. On the Complexity of Additively Homomorphic UC Commitments

Proof of Theorem 1. We prove security for the case with a dummy adversary,
so that the simulator is outputting simulated values directly to the environment
and is receiving inputs directly from the environment. We focus on the case
with one call to Commit. The proof trivially lifts to the case with multiple
invocations. The case with two static corruptions is trivial. The case with no
corruptions follows from the case with a corrupted receiver, as in the ideal
functionality FHCOM the adversary is given all values which are given to the
receiver, so one can just simulate the corrupted receiver and then output only
the public transcript of the communication to the environment. We now first
prove the case with a corrupted receiver and then the case with a corrupted
sender.

Assume that Pr is corrupted. We use P̆r to denote the corrupted receiver.
This is just a mnemonic pseudonym for the environment Z. The main idea
behind the simulation is to simply run honestly until the opening phase. In the
opening phase we then equivocate the commitment to the value received from
the ideal functionality FHCOM by adjusting the bits s̄1−bi

j not being watched
by the receiver. This will be indistinguishable from the real world as the
vectors s̄1−bi

i are indistinguishable from uniform in the view of P̆r and if all the
vectors s̄1−bi

i were uniform, then adjusting the bits not watched by P̆r would
be perfectly indistinguishable.

We first describe how to simulate the protocol without the step Consistency
Check. We then discuss how to extend the simulation to this case.

The simulator S will run Init honestly, simulating FROT to P̆r. It then runs
Commit honestly. On input (opened, sid, {(c, αc)}c∈C , r) it must simulate
an opening.

In the simulation we use the fact that in the real protocol Pr can recompute
all the values received from Ps given just the value r and the values wc, which
it already knows, and assuming that the checks

rbi [i] = w[i] , cbk+l [l] = w[k + l]

at the end of Figure 3.4 are true. This goes as follows: First compute

w =
∑
c∈C

αc ·wc, t = C(r) , c = πk+1,n(t) , (3.1)

as in the protocol. Then for i ∈ [k] and l ∈ [n− k] define

rbi [i] = w[i] , cbk+l [l] = w[k + l] . (3.2)

r1−bi [i] = r[i]− rbi [i] , c1−bk+l [l] = c[l]− cbk+l [l] . (3.3)

In (3.2) we use that the checks are true. In (3.3) we use that r = r0 + r1

and c1 = c − c0 by construction of Pr. This clearly correctly recomputes
(r0, r1, c0).
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On input (opened, sid, {(c, αc)}c∈C , r) from FHCOM, the simulator will
compute (r0, r1, c0) from r and the values wc known by P̆r as above and send
(opening, {c, αc}c∈C , (r0, r1, c0)) to P̆r.

We now argue that the simulation is computationally indistinguishable
from the real protocol. We go via two hybrids.

We define Hybrid I as follows. Instead of computing the rows s̄1−bi
i from

the seeds l1−bii the simulator samples s̄1−bi
i uniformly at random of the same

length. Since P̆r never sees the seeds l1−bii and Ps only uses them as input
to PRG, we can show that the view of P̆r in the simulation and Hybrid I are
computationally indistinguishable by a black box reduction to the security of
PRG.

We define Hybrid II as follows. We start from the real protocol, but
instead of computing the rows s̄1−bi

i from the seeds l1−bii we again sample s̄1−bi
i

uniformly at random of the same length. As above, we can show that the view
of P̆r in the protocol and Hybrid II are computationally indistinguishable.

The proof then concludes by transitivity of computational indistinguishabil-
ity and by observing that the views of P̆r in Hybrid I and Hybrid II are perfectly
indistinguishable. The main observation needed for seeing this is that in Hybrid
I all the bits rj [i] are chosen uniformly at random and independently by FHCOM,
whereas in Hybrid II they are defined by rj [i] = r0

j [i] + r1
j [i] = rbij [i] + r1−bi

j [i],
where all the bits r1−bi

j [i] are chosen uniformly at random and independently
by S. This yields the same distributions of the values rj . All other value
clearly have the same distribution.

We now address the step Consistency Check. The simulation of this step
follows the same pattern as above. For g ∈ [2s] define r̃g = r̃0

g + r̃1
g . This is

the value from which t̃g is computed in Step 7 in Figure 3.4. In the simulation
and Hybrid I, instead pick r̃g uniformly at random and then recompute the
values sent to P̆r as above. In Hybrid II compute r̃g as in the protocol (but
still starting from the uniformly random s̄1−bi

i ). Then simply observe that r̃g
has the same distribution in Hybrid I and Hybrid II. In Hybrid I it is uniformly
random. In Hybrid II it is computed as

r̃0
g + r̃1

g = (r0
T +γ+g + r1

T +γ+g) +
γ∑
j=1

xgjrT +j ,

and it is easy to see that r0
T +γ+g+r1

T +γ+g is uniformly random and independent
of all other values in the view of P̆r.

We now consider the case where the sender is corrupted who we denote
P̆s. The simulator will run the code of Ps honestly, simulating also FROT
honestly. It will record the values (bi, l0i , l1i ) from Init. The remaining job
of the simulator is then to extract the values r̃j to send to FHCOM in the
command (corrupt-commit, sid, {r̃j}j∈J ). This should be done such that
the probability that the receiver later outputs (opened, sid, {(c, αc)}c∈C , r)
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for r 6=
∑
c∈C αcr̃c is at most 2−s. We first describe how to extract the values

r̃j and then show that the commitments are binding to these values.
We use the Consistency Check performed in the second half of Figure 3.3

to define a set E ⊆ {1, . . . , n}. We call this the erasure set. This name will
make sense later, but for now think of E as the set of indices for which the
corrupted sender P̆s after the consistency checks knows the choice bits bi for
i ∈ E and for which the bits bi for i 6∈ E are still uniform in the view of P̆s.

We first describe how to compute the erasure set for a single of the 2s
consistency checks and then discuss how to compute the joint set. We therefore
omit the consistency check index g in the following and use the first of the 2s
extra commitments as the blinding value.

Define the column vectors s0
j and s1

j as in the protocol. This is possible as
the seeds from FROT are well defined. Following the protocol, and adding a
few more definitions, define

r0
j = πk(s0

j ) , r1
j = πk(s1

j ) , rj = r0
j + r1

j , u0
j = πk+1,n(s0

j ) ,
u1
j = πk+1,n(s1

j ) ,uj = u0
j + u1

j , tj = C(rj) , cj = πk+1,n(tj) ,
c0
j = u0

j , c1
j = cj − c0

j ,d
0
j = u0

j , d1
j = u1

j + c̄j , dj = d0
j + d1

j = uj + c̄j ,

w0
j = r0

j ‖d0
j , w1

j = r1
j ‖d1

j .

Notice that if Ps is honest, then

c̄j = cj − uj

and therefore
dj = d0

j + d1
j = u0

j + u1
j + c̄j = cj .

Hence d0
j and d1

j are the two shares of the non-systematic part cj the same
way that r0

j and r1
j are the two shares of the systematic part rj . If the sender

was honest we would in particular have that

w0
j + w1

j = rj‖dj = rj‖cj = C(rj) ,

i.e., w0
j and w1

j would be the two shares of the whole codeword.
We can define the values that an honest Ps should send as

r̃0 = r0
T +γ+1 +

∑
j

xjr
0
j , r̃1 = r1

T +γ+1 +
∑
j

xjr
1
j , c̃0 = c0

T +γ+1 +
∑
j

xjc
0
j .

These values can be used to define values

r̃ = r̃0 + r̃1 , t̃ = C(r̃) , c̃ = πk+1,n(t̃) ,
c̃1 = c̃− c̃0 , w̃0 = r̃0‖c̃0 , w̃1 = r̃1‖c̃1 .

We use (r̆0, r̆1, c̆0) to denote the values actually sent by P̆s and we let the
following denote the values computed by Pr (plus some extra definitions).
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r̆ = r̆0 + r̆1 , t̆ = C(r̆) , c̆ = πk+1,n(t̆) ,
c̆1 = c̆− c̆0 , w̆0 = r̆0‖c̆0 , w̆1 = r̆1‖c̆1 , w̆ = w̆0 + w̆1 .

The simulator computes

w̃ = wT +γ+1 +
∑
j

xjwT +j (3.4)

as Pr in the protocol. For later use, define w̃0 = w0
T +γ+1 +

∑
j xjw

0
T +j and

w̃1 = w1
T +γ+1 +

∑
j xjw

1
T +j .

The check performed by Pr is then simply to check for u = 1, . . . , n that

w̆bu [u] = w̃[u] . (3.5)

Notice that in the protocol we have that

wj = b ∗ (w1
j −w0

j ) + w0
j ,

where ∗ denotes the Schur product also known as the positionwise product of
vectors. To see this notice that (b ∗ (w1

j −w0
j ) + w0

j )[i] = bi(w1
j [i]−w0

j [i]) +
w0
j [i] = wbi

j [i]. In other words,

wj [i] = wbi
j [i] .

It then follows from (3.4) that

w̃ = b ∗ (w̃1 − w̃0) + w̃0 ,

from which it follows that
w̃[u] = w̃bu [u] .

From (3.5) it then follows that P̆s passes the consistency check if and only if
for u = 1, . . . , n it holds that

w̆bu [u] = w̃bu [u] . (3.6)

We make some definitions related to the check in (3.6). We say that a position
u ∈ [n] is silly if w̆0[u] 6= w̃0[u] and w̆1[u] 6= w̃1[u]. We say that a position
u ∈ [n] is clean if w̆0[u] = w̃0[u] and w̆1[u] = w̃1[u]. We say that a position
u ∈ [n] is probing if it is not silly or clean. Let E denote the set of probing
positions u. Notice that if there is a silly position u, then w̆bu [u] 6= w̃bu [u] so
P̆s gets caught. We can therefore assume without loss of generality that there
are no silly positions. For the probing positions u ∈ E, there is by definition
a bit cu such that w̆1−cu [u] 6= w̃1−cu [u] and such that w̆cu [u] = w̃cu [u]. This
means that P̆s passes the test only if cu = bu for all u ∈ E. Since P̆s knows cu
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it follows that if P̆s does not get caught, then it can guess bu for u ∈ E with
probability 1.

We compute a set E like above for each of the 2s checks and let E be the
union of these. Clearly P̆s passes the 2s tests only if it can guess bu for u ∈ E
with probability 1.

Before we proceed to describe the extractor, we are now going to show two
facts about E. First we will show that |E| < s, except with probability 2−s.
This follows from the simple observation that each bu for u ∈ E is uniformly
random and P̆s passes the consistency test if and only if cu = bu for u ∈ E and
the only information that P̆s has on the bits bu is via the probing positions.
Hence P̆s passes the consistency test with probability at most 2−|E|. We can
therefore assume for the rest of the proof that |E| < s.

Second, let C−E be the code obtained from C by puncturing at the positions
u ∈ E, i.e., a codeword of C−E can be computed as t = C(r) and then
outputting t−E , i.e., the vector t where we remove the positions u ∈ E. We
show that for all j = T + 1, . . . , T + γ it holds that

(w0
j + w1

j )−E ∈ C−E(Fk) ,

except with probability 2−s. This is equivalent to proving that

E ∈ ∆C((w0
j + w1

j )
T +γ
j=T +1) .

Since the vectors (w0
j + w1

j )
T +γ
j=T +1 are fixed at the point where the receiver

samples the linear combinations we can use Lemma 1 to conclude that except
with probability 2−s either |E| ≥ s or

∆C((w̃0
g + w̃1

g)2s
g=1) ⊆ ∆C((w0

j + w1
j )
T +γ
j=T +1) , (3.7)

where w̃0
g and w̃1

g are the values of w̃0 and w̃1 in test number g. Since we have
assumed that |E| < s, we can assume that (3.7) holds except with probability
2−s (as d ≥ s). It is therefore sufficient to prove that

E ∈ ∆C((w̃0
g + w̃1

g)2s
g=1) .

To see that E ∈ ∆C((w̃0
g + w̃1

g)2s
g=1), observe that by construction we have that

(w̆0 + w̆1)−E ∈ C−E(Fk), so if a (w̃0
g + w̃1

g)−E 6∈ C−E(Fk) we either have that
(w̃0

g)−E 6= (w̆0)−E or (w̃1
g)−E 6= (w̆1)−E . Since there are no silly positions,

this implies that we have a new probing position u 6∈ E, a contradiction to the
definition of E.

We can now assume without loss of generality that |E| < s and that
(w0

j + w1
j )−E ∈ C−E(Fk). From |E| < s and C having minimal distance d ≥ s

we have that C−E has minimal distance ≥ 1. Hence we can from each j and
each (w0

j + w1
j )−E ∈ C−E(Fk) compute r̃j ∈ Fk such that

(w0
j + w1

j )−E = C−E(r̃j) .
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These are the values that S will send to FHCOM.
We then proceed to show that for all {(c, αc)}c∈C the environment can

open to (opened, sid, {(c, αc)}c∈C , r̃) for r̃ =
∑
c∈C αcr̃c with probability 1.

The reason for this is that if P̆s computes the values in the opening correctly,
then clearly (w̆0)−E = (w̃0)−E and (w̆1)−E = (w̃1)−E . Furthermore, for the
positions u ∈ E it can open to any value as it knows bu. It therefore follows
that if P̆s can open to (opened, sid, {(c, αc)}c∈C , r) for r 6=

∑
c∈C αcr̃c, then

it can open {(c, αc)}c∈C to two different values. Since the code has distance
d ≥ s, it is easy to see that after opening some {(c, αc)}c∈C to two different
values, the environment can compute with probability 1 at least s of the choice
bits bu, which it can do with probability at most 2−s, which is negligible.

3.4 Comparison with Recent Schemes

In this section we compare the efficiency of our scheme to the most efficient
schemes in the literature realizing UC-secure commitments with security against
a static and malicious adversary. In particular, we compare our construction to
the schemes of [Lin11], [BCPV13], [CJS14] and [CDD+15]. We omit the scheme
of [CDD+16] in the following as in terms of communication it is equivalent to
ours and our concrete comparison does not reflect the asymptotic differences
in computation time.

The scheme of [BCPV13] (Fig. 6) is a slightly optimized version of [Lin11]
(Protocol 2) which implement a multi-commitment ideal functionality. Along
with [CJS14] these schemes support commitments between multiple parties
natively, a property not shared with the rest of the protocols in this comparison.
We therefore only consider the two party case where a sender commits to a
receiver. The schemes of [Lin11, BCPV13] are in the CRS-model and their
security relies on the DDH assumption. As the messages to be committed
to are encoded as group elements the message size and the level of security
are coupled in these schemes. For large messages this is not a big issue as
the group size would just increase as well, or one can break the message into
smaller blocks and commit to each block. However, for shorter messages, it is
not possible to decrease the group size, as this would weaken security. The
authors propose instantiating their scheme over an elliptic curve group over a
field size of 256-bits so later in our comparison we also consider committing
to values of this length. This is optimal for these schemes as the overhead
of working with group elements of 256-bits would become more apparent if
committing to smaller values.

The scheme of [CJS14] in the global random oracle model can be based on
any stand-alone secure trapdoor commitment scheme, but for concreteness we
compare the scheme instantiated with the commitment scheme of [Ped92] as
also proposed by the authors. As [Ped92] is also based on the DDH assumption
we use the same setting and parameters for [CJS14] as for the former two
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Scheme Hom. OTs Communication Rounds Computation(2
1
) (3

2
)

Commit Open Commit Open Commit Open
Exp. Enc. Exp. Enc.

[Lin11] 7 0 0 4g 6g + 4l + k 1 5 5 0 181/3 0
[BCPV13] 7 0 0 4g 5g + 3l + k 1 3 10 0 12 0
[CJS14] 7 0 0 4g + 2l + h 3l + 2h+ 3κ+ k 2 3 5 0 5 0
[CDD+15], basic 7 n 0 2nf (k + n+ 1)f 1 1 0 1 0 1
[CDD+15], homo X 0 n 6(k+2n)nf/k (k + 2n+ 1)f 1 1 0 8n/k + 2 0 1
This Work X n 0 (2s·2nf+κ)/γ + nf (k + n+ 1)f 3 1 0 2s·2/γ + 1 0 1

Table 3.1: Comparison of the most efficient UC-secure schemes for committing
to γ messages of k components. Sizes are in bits. Legend: g is size of a group
element, l is size of a scalar in the exponent, h is the output length of the
random oracle, f is the size of a finite field element, Exp. denotes the number of
modular exponentiations, Enc. denotes the number of encoding procedures of
the corresponding codes which have length n and n. The schemes of [CDD+15]
are presented with the sharing parameter t set to 2 for the basic and 3 for the
homomorphic.

schemes.
We present our detailed comparison in Table 3.1. The table shows the costs

of all the previously mentioned schemes in terms of OTs required, communica-
tion, number of rounds and computation. For the schemes of [CDD+15] we
have fixed the sharing parameter t to 2 and 3 for the basic and homomorphic
version, respectively. To the best of our knowledge this is also the optimal
choice in all settings. Also for the scheme of [CJS14] we do not list the queries
to the random oracle in the table, but remark that their scheme requires 6
queries per commitment. For our scheme, instead of counting the cost of
sending the challenges (xg1, x

g
2, . . . , x

g
γ) ∈ F for g ∈ [2s], we assume the receiver

sends a random seed of size κ instead. This is then used as input to a PRG
whose output is used to determine the challenges.

To give a flavor of the actual numbers we compute Table 3.1 for specific
parameters in Table 3.2. We fix the field to F2 and look at computational
security κ = 128, statistical security s = 40 and instantiate the random oracle
required by [CJS14] with SHA-256. As the schemes of [Lin11, BCPV13, CJS14]
rely on the hardness of the DDH assumption, a 256-bit EC group is assumed
sufficient for 128-bit security [SRG+14]. As already mentioned we look at
message length k = 256 as this is well suited for these schemes.2 The best
code we could find for the schemes of [CDD+15] in this setting has parameters
[631, 256, 81] and is a shortened BCH code. For our scheme, the best code we
have identified for the above parameters is a [419, 256, 40] expurgated BCH
code [SS06]. Also, we recall the experiments performed in [CDD+15] showing
that exponentiations in a EC-DDH group of the above size require roughly

2We here assume a perfect efficient encoding of 256-bit values to group elements of a
256-bit EC group.
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Scheme Homo OTs Communication Rounds Computation(2
1
) (3

2
)

Commit Open Commit Open Commit Open
Exp. Enc. Exp. Enc.

[Lin11] 7 0 0 1,024 2,816 1 5 5 0 181/3 0
[BCPV13] 7 0 0 1,024 2,304 1 3 10 0 12 0
[CJS14] 7 0 0 1,792 1,920 2 3 5 0 5 0
[CDD+15], basic, γ = 319 7 631 0 4,301 888 1 1 22 1 0 1
[CDD+15], homo, γ = 319 X 0 631 35,615 1,519 1 1 88 22 0 1
This Work, γ = 319 X 419 0 2,648 676 3 1 15 1.5 0 1
[CDD+15], basic, γ = 1, 000 7 631 0 2,232 888 1 1 7 1 0 1
[CDD+15], homo, γ = 1, 000 X 0 631 26,649 1,519 1 1 28 22 0 1
This Work, γ = 1, 000 X 419 0 1,130 676 3 1 5 1 0 1
[CDD+15], basic, γ = 10, 000 7 631 0 1,359 888 1 1 0 1 0 1
[CDD+15], homo, γ = 10, 000 X 0 631 22,869 1,519 1 1 3 22 0 1
This Work, γ = 10, 000 X 419 0 491 676 3 1 0 1 0 1
[CDD+15], basic, γ = 100, 000 7 631 0 1,272 888 1 1 0 1 0 1
[CDD+15], homo, γ = 100, 000 X 0 631 22,491 1,519 1 1 0 22 0 1
This Work, γ = 100, 000 X 419 0 427 676 3 1 0 1 0 1

Table 3.2: Concrete efficiency comparison of the most efficient UC-secure
schemes for committing to messages of size k = 256, κ = 128, h = 256
and s = 40 where the field is F2. In the table γ represents the number
of commitments the parties perform. These numbers include the cost of
performing the initial OTs, both in terms of communication and computation.

500 times more computation time compared to encoding using a BCH code
for parameters of the above type.3 In their brief comparison with [HMQ04],
another commitment scheme in the random oracle model, the experiments
showed that one of the above BCH encodings is roughly 1.6 times faster than
4 SHA-256 invocations, which is the number of random oracle queries required
by [HMQ04]. This therefore suggests that one BCH encoding is also faster
than the 6 random oracle queries required by [CJS14] if indeed instantiated
with SHA-256.

To give as meaningful comparisons as possible we also instantiate the initial
OTs and include the cost of these in Table 3.2. As the homomorphic version of
[CDD+15] require 2-out-of-3 OTs in the setup phase, using techniques described
in [LOP11, LP11], we have calculated that these require communicating 26
group elements and 44 exponentiations per invocation. The standard 1-out-
of-2 OTs we instantiate with [PVW08] which require communicating 6 group
elements and computing 11 exponentiations per invocation.

In Table 3.2 we do not take into consideration OT extension techniques
[Bea96, IKNP03, Nie07, NNOB12, Lar15, ALSZ15, KOS15], as we do so few
OTs that even the most efficient of these schemes might not improve the
efficiency in practice. We note however that if in a setting where OT extension
is already used, this would have a very positive impact on our scheme as the
OTs in the setup phase would be much less costly. On a technical note some

3They run the experiments with a shortened BCH code with parameters [796, 256, 121],
which therefore suggests their observations are also valid for our choice of parameters.
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of the ideas used in this work are very related to the OT extension techniques
introduced in [IKNP03] (and used in all follow-up work that make black-box
use of a PRG). However an important and interesting difference is that in our
work we do not “swap” the roles of the sender and receiver for the initial OTs
as otherwise the case for current OT extension protocols. This observation
means that the related work of [GIKW14], which makes use of OT extension,
would look inherently different from our protocol, if instantiated with one of
the OT extension protocols that follow the [IKNP03] blueprint.

As can be seen in Table 3.2, our scheme improves as the number of com-
mitted values γ grows. In particular we see that at around 319 commitments,
for the above message sizes and security parameters, our scheme outperforms
all previous schemes in total communication, while at the same time offering
additive homomorphism.

3.5 Protocol Extension

As the scheme presented in Section 3.2 only implements commitments to
random values we here describe an efficient extension to chosen message
commitments. Our extension ΠEHCOM is phrased in the FHCOM-hybrid model
and it is presented in Figure 3.5. The techniques presented therein are folklore
and are known to work for any UC-secure commitment scheme, but we include
them as a protocol extension for completeness. The Chosen-Commit step
shows how one can turn a commitment of a random value into a commitment
of a chosen value. This is done by simply using the committed random value
as a one-time pad on the chosen value and sending this to Pr. The Extended-
Open step describes how to open to linear combinations of either random
commitments, chosen commitments or both. It works by using FHCOM to open
to the random commitments and the commitments used to one-time pad the
chosen commitments. Together with the previously sent one-time pad the
receiver can then learn the designated linear combination.

Finally we present a Batch-Open step that achieves very close to optimal
amortized communication complexity for opening to a set of messages. The
technique is similar to the consistency check of ΠHCOM. When required to
open to a set of messages, the sender Ps will start by sending the messages
directly to the receiver Pr. Next, the receiver challenges the sender to open to
ŝ = s/log2(|F|) random linear combinations of all the received messages. Notice
that unlike the initial commit step where 2s linear combinations are required,
only ŝ ≤ s combinations are required for batch opening. See Section 3.2 for an
explanation why ŝ suffices for Batch-Open. When receiving the opening from
FHCOM, Pr verifies that it is consistent with the previously received messages
and if this is the case it accepts these. For the exact same reasons as covered
in the proof of Theorem 1 it follows that this approach of opening values is
secure. For clarity and ease of presentation the description of batch-opening
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ΠEHCOM describes a protocol between a sender Ps and a receiver Pr.

Chosen-Commit:
1. On input (chosen-commit, sid, cid,m), Ps picks an already committed to

value rj and computes m̃ = m− rj . It then sends (chosen, sid, cid, j, m̃)
to Pr. Else it ignores the message.

2. Pr stores (chosen, sid, cid, j, m̃) and outputs (chosen-receipt, sid, cid).
Extended-Open:

1. On input (extended-open, sid, {(j, αj)}j∈Cr
, {(l, βl)}l∈Cc

) with βl ∈ F for
l ∈ Cc and αj ∈ F, for j ∈ Cr, Ps verifies that and it has previously
committed to a value rj using FHCOM for j ∈ Cr. Else it ignores the
message. For all l ∈ Cc Ps verifies that it previously sent the message
(chosen, sid, l, j, m̃l) to Pr. Let J be the set of the corresponding in-
dices j, similarly let βj = βl for the corresponding ID l. Ps then sends
(open, sid, {(j, αj)}j∈Cr

∪
{

(j̄, βj̄)
}
j∈J ) to FHCOM.

2. Upon receiving (open, sid, {(j, αj)}j∈Cr
∪
{

(j̄, βj̄)
}
j∈J , r) from FHCOM, Pr

identifies the previously received messages (chosen, sid, l, j, m̃l) and outputs
(extended-opened, sid, {(j, αj)}j∈Cr

, {(l, βl)}l∈Cc
, r +

∑
l∈Cc

βl · m̃l).
Batch-Open:

1. On input (batch-open, sid, Cr, Cc). For all j ∈ Cr Ps verifies that
it has previously committed to a value rj using FHCOM. Else it
ignores the message. For all l ∈ Cc Ps verifies that it previ-
ously sent the message (chosen, sid, l, j, m̃l) to Pr. Ps then sends
(batch-open, sid, {(j, rj)}j∈Cr

, {(l,ml)}l∈Cc
) to Pr, where rj and ml are

random and chosen messages, respectively, previously committed to.
2. Let tr = |Cr|, tc = |Cc| and ŝ = s/log2(|F|). For g ∈ [ŝ] Pr then samples

random values xg1, . . . , x
g
tr , y

g
1 , . . . , y

g
tc ∈R F and sends these to Ps.

3. Then for g ∈ [ŝ] Ps and Pr run Extended-Open with input

(extended-open, sid, {(ju, xgu)}u∈[tr] , {(lv, y
g
v)}v∈[tc])

where ju and lv are the u’th and v’th element of Cr and Cc respectively,
under an arbitrary ordering.

4. Pr lets (extended-opened, sid, {(ju, xgu)}u∈[tr] , {(lv, ygv)}v∈[tc] ,ng) be the
output of running Extended-Open. Finally for g ∈ [ŝ] Pr now verifies that

ng =
∑
u∈[tr]

xgu · rju +
∑
v∈[tc]

ygv ·mlv .

If true then Pr outputs (batch-opened, sid, {(j, rj)}j∈Cr
∪ {(l,ml)}l∈Cc

).
Else it aborts and halts.

Figure 3.5: Protocol ΠEHCOM in the FHCOM-hybrid model.
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does not take into account opening to linear combinations of random and
chosen commitments. However the procedure can easily be extended to this
setting using the same approach as in Extended-Open.

In terms of efficiency, to open N commitments with message-size l, the
sender needs to send lN field elements along with the verification overhead ŝÔ+
κ where Ô is the cost of opening to a commitment using FHCOM. Therefore if the
functionality is instantiated with the scheme ΠHCOM, the total communication
for batch-opening is ŝ(k + n)f + κ + kNf bits where k is the length of the
message, n is the length of the code used, f is the size of a field element.

We now elaborate on the applicability of batch-opening for committing
to large messages as mentioned in Section 3.2. Recall that there we split the
large message m of size M into N blocks of size l and the idea is to instantiate
ΠHCOM with a [ns, l, s] code and commit to m in blocks of size l. This requires
ns initial OTs to setup and requires sending ŝ · 2nsf + κ + nsNf bits to
commit to all blocks. For a fixed ŝ this has rate close to 1 for large enough
l. In the opening phase we can then use the above batch-opening technique
to open to all the blocks of the original message, and thus achieve a rate of
Mf/(ŝ(l+ns)f+κ+lNf) ≈ 1 in the opening phase as well.

In [GIKW14] the authors present an example of committing to strings of
length 230 with statistical security s = 30 achieving rate 1.046−1 ≈ 0.95 in both
the commit and open phase. To achieve these numbers the field size is required
to be very large as well. The authors propose techniques to reduce the field
size, however at the cost of reducing the rate. We will instantiate the approach
described above using a binary BCH code over the field F2 and recall that
these have parameters [n− 1, n−dd−1/2e log(n+ 1),≥ d]. Using a block length
of 213 and s = 30 therefore gives us a code with parameters [8191, 7996, 30].
Thus we split the message into 134, 285 = d230/7996e blocks. In the commitment
phase we therefore achieve rate 230/(30·2·8191+128+8191·134,285) ≈ 0.976. Using
the batch-opening technique the rate in the opening phase is even higher
than in the commit phase, as this does not require any “blinding” values.
In the above calculations we do not take into account the 8191 initial OTs
required to setup our scheme. However using the OT-extension techniques
of [KOS15], each OT for κ-bit strings can be run using only κ initial “seed”
OTs and each extended OT then requires only κ bits of communication.
Instantiating the seed OTs with the protocol of [PVW08] for κ = 128 results
in 6 · 256 · 128 + 8191 · 128 = 1, 245, 056 extra bits of communication which
lowers the rate to 0.974.

Finally, based on local experiments with BCH codes with the above pa-
rameters, we observe that the running time of an encoding operation using the
above larger parameters is roughly 2.5 times slower than an encoding using
a BCH code with parameters [796, 256, 121]. This suggests that the above
approach remains practical for implementations as well.
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Chapter 4

Constant Round Maliciously
Secure 2PC with
Function-independent
Preprocessing using LEGO

The following chapter is based on the work of [NST17] and is therefore identical
(except for minor layout modifications) to the current full version available at
https://eprint.iacr.org/2016/1069.

4.1 Introduction

Secure two-party computation is the area of cryptology dealing with two
mutually distrusting parties wishing to compute an arbitrary function f on
private inputs. Say A has input x and B has input y. The guarantee offered
from securely computing f is that the only thing learned from the computation
is the output z = f(x, y), in particular nothing is revealed about the other
party’s input that cannot be inferred from the output z. This seemingly
simple guarantee turns out to be extremely powerful and several real-world
applications and companies using secure computation have arisen in recent
years [BCD+09, BLW08, Dya, Par, Sep]. The idea of secure computation was
initially conceived in 1982 by Andrew Yao [Yao82, Yao86], particularly for the
semi-honest setting, in which all parties are assumed to follow the protocol
specification but can try to extract as much information as possible from the
protocol execution. Yao gave an approach for preventing any such extraction
using a technique referred to as the garbled circuit technique. At a very high
level, using the abstraction of [BHR12b], A starts by garbling or “encrypting”
the circuit f using the garbling algorithm (F, e, d) = Gb(f) obtaining a garbled
circuit F , an input encoding function e and an output decoding function d. It
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then encodes its input as X = En(x, e) and sends (F,X, d) to B. Then, using
oblivious transfer (OT), A blindly transfers a garbled version Y of B’s input
which enables B to compute a garbled output Z = Ev(F,X‖Y ) which it can
then decode to obtain z = De(Z, d). Finally B returns z to A.

As already mentioned, the above sketched approach can be proven secure
in the semi-honest setting [LP09]. In the stronger malicious setting however
it completely breaks down as in this model the parties are allowed to deviate
arbitrarily from the protocol specification. One of the most obvious attacks is
for A to garble a different function f ′ 6= f which could enable A to learn y from
the resulting value z′ without B even noticing this. To combat this type of
attack the cut-and-choose technique can be applied: instead of garbling a single
circuit, A garbles several copies and sends these to B. A random subset of them
is now selected for checking by B and if everything is correct, some fraction of
the remaining circuits must be correct with overwhelming probability. Leaving
out many details these can now be evaluated to obtain a single final output.
While this approach thwarts the above attack it unfortunately opens up for
several new ones that also need to be dealt with, for instance ensuring input
consistency for all the remaining evaluation garbled circuits. Another more
subtle issue in the malicious setting is the Selective-OT Attack (also called
Selective Failure Attack) as pointed out in [MF06, KS06]. A corrupt A can
cheat when offering B the garbled inputs in the OT step by using a bogus
value for either the 0 or the 1 input. This will either result in B aborting as it
cannot evaluate the garbled circuit or it will go through undetected and B will
return the output to A. Either way the input bit of B is revealed to A which is
a direct breach of security. It is easy to see that using this attack A can learn
any l bits of B’s input with probability 2−l if not properly dealt with.

Over the last decade several solutions to the above issues have been pro-
posed, along with dramatic efficiency improvements for secure 2PC protocols
based on the cut-and-choose approach of garbled circuits [LP07, PSSW09,
LP11, sS11, HEKM11, KsS12, Bra13, FN13, HKE13, Lin13, MR13, sS13,
HMsG13, FJN14, AMPR14, WMK17]. Finally we note for completeness that
secure computation has also been studied in great detail for many other set-
tings, including the more general multi-party case (MPC). Several different
adversarial models such as honest majority [GMW87, BGW88, CCD88], dis-
honest majority [DPSZ12] and covert security [AL07] have also been proposed
in the literature. In this work we focus solely on the special case of two parties
with malicious security and in the next section we discuss the reported concrete
efficiency of state-of-the-art protocols in this setting.

Related Work

In the less than 10 years since the first reported implementation of maliciously
secure 2PC based on garbled circuits [LPS08], the performance advancements
have been enormous [PSSW09, sS11, KsS12, sS13, FN13, FJN14, AMPR14,
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LR15, RR16, WMK17]. Furthermore different settings and hardware con-
figurations have been explored, notably using commodity grade GPUs in
[FN13, FJN14] and large-scale CPU clusters [sS13] to parallelize the bulk of
the computation. In the single-execution setting based solely on standard hard-
ware the best reported performance time is that of [WMK17] which evaluates
an AES-128 circuit in total time 65 ms. In addition, the works of [LR15] and
[RR16] explore the more restricted setting of amortizing secure 2PC based
on the cut-and-choose and the dual execution approach, respectively. By
amortizing we mean that the protocols exploit constructing multiple secure
evaluations of the same function f yielding impressive performance benefits
over the more general single execution setting. Furthermore these protocols are
in the offline/online setting where the bulk of the computation and communica-
tion can be done before the inputs are determined. We highlight that for both
protocols, the offline computation depends on the function to be computed
and we will refer to this as dependent preprocessing. However both protocols
allow for the inputs to be chosen sequentially when securely evaluating f . This
allows for a low latency online phase which is desirable for many applications.
For securely computing 1024 AES-128 circuits, [LR15] reports 74 ms offline and
7 ms online per evaluation, while the more recent [RR16] reports 5.1 ms offline
and 1.3 ms online for the same setting. Furthermore [RR16] achieves a 0.26 ms
online phase when considering throughput alone, i.e. batched evaluation.

Another direction in secure computation is the secret sharing approach
where the parties initially secret share their inputs and then interactively
compute the function f in a secure manner. A particularly nice property
of these protocols is that when considering the offline/online setting the
offline phase can usually be done independently of the circuit f which we
call independent preprocessing. This allows for naively utilizing parallelism in
the preprocessing phase and also adds more flexibility as the offline material
produced is universal. Another benefit is that in general this secret-sharing
technique works for any number of parties and over any field, which depending
on the desired functionality f can significantly increase performance. We note
however that these protocols usually employ expensive public-key cryptography
in the preprocessing phase and are therefore much slower than the offline phases
of e.g. [LR15, RR16]. Finally the inherent interactiveness of the online phase,
which has O(depth(f)) rounds of interaction, makes these protocols ill-suited
for high latency networks such as WANs. There are many variations of
the secret sharing approach but they typically enjoy the same overall pros
and cons in terms of independent preprocessing and required interactivity.
Examples of recent protocols following this paradigm are: TinyOT [NNOB12,
LOS14, BLN+15], SPDZ [DPSZ12, DKL+13, KSS13, KOS16], MiniMac [DZ13,
DLT14, DZ16], and TinyTables [DNNR17]. The fastest reported online time
for computing an AES-128 circuit in this setting is 1.05 ms by [DNNR17] using
dependent preprocessing. The work of [KSS13] reports 12 ms online time using
independent preprocessing, but the evaluation exploits the algebraic structure
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of AES-128. Furthermore [DNNR17] has an impressive throughput of 0.45 µs
per AES-128 while [KSS13] and [DZ16] have throughput ∼1 ms and 0.4 ms,
respectively.

In Table 4.1 we give an overview of the properties of the mentioned proto-
cols and the reported timings for securely evaluating AES-128 on LAN in the
offline/online setting. As the secret sharing-based, non-constant round, proto-
cols are ill-suited for high latency networks we omit this from Table 4.1 since no
AES-128 timings are published for these schemes in a WAN setting (however
see Section 4.6 for a WAN comparison of the garbled circuit protocols). The
timings reported for [DNNR17, LR15, RR16] and This Work are all measured
on the same hardware (Amazon Web Services, c4.8xlarge instances on 10 Gbit
LAN), while the timings for [WMK17] are on a less powerful instance (Amazon
Web Services, c4.2xlarge instances on 2.5 Gbit LAN). Finally the results of
[KSS13, DZ16] have been obtained on high-end Desktop machines with 1 Gbit
LAN. The timings of [LR15, RR16] and This Work are all for 1024 AES-128
evaluations, while those of [WMK17] are for a single-execution. We believe
the difference in performance between the offline/online (62 ms + 21 ms) and
total latency (65 ms) settings for [WMK17] can be explained by the inability
to interleave the sending/checking and evaluation of garbled circuits in the
offline/online setting. In summary, as can be seen in the table our work is the
first implementation of a protocol combining the advantages of independent
(and dependent) preprocessing using only a constant number of rounds.
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LEGO

The Large Efficient Garbled-circuit Optimization (LEGO) was first introduced
by Nielsen and Orlandi in [NO09] which showed a new approach for mali-
ciously secure 2PC based on cut-and-choose of garbled gates. This gave an
asymptotic complexity improvement to O(s/log(|f |)) as opposed to O(s) for
the standard circuit cut-and-choose approach for statistical security s. How-
ever the construction of [NO09] was heavily based on expensive public-key
cryptography and was mainly considered an asymptotic advancement. This
was later improved in the two follow-up works of MiniLEGO [FJN+13] and
TinyLEGO [FJNT15] yielding incrementing asymptotic and concrete efficiency
improvements. In a nutshell, the LEGO technique works by the generator A
first garbling multiple individual AND gates (as opposed to garbling entire
circuits) and sending these to the evaluator B. Then a cut-and-choose step on a
random subset of these gates is carried out and finally the remaining unchecked
gates are combined (or soldered) into a garbled fault tolerant circuit computing
f . A crucial ingredient for securely soldering the garbled gates into circuits
are XOR-homomorphic commitments which in [NO09] were realized using
expensive Pedersen commitments [Ped92]. In the follow-up construction of
[FJN+13] these were replaced by an asymptotically more efficient construction,
however the concrete communication overhead of the proposed commitment
scheme was inadequate for the protocol to be competitive for realistic circuit
sizes and parameters. In the recent works of [FJNT16, CDD+16] this over-
head has been improved to an optimal rate-1 and the resulting UC-secure
XOR-homomorphic commitment scheme is both asymptotically and concretely
very efficient. Finally the work of [HZ15] introduced a different primitive for
LEGO soldering called XOR-Homomorphic Interactive Hash, which has some
advantages over the commitment approach. However, the best instantiation of
XOR-Homomorphic Interactive Hash still induces higher overall overhead than
the commitment approach when using the schemes of [FJNT16, CDD+16].

Although the original LEGO protocol, and the above-mentioned follow-up
works, asymptotically are very efficient, the overall consensus in the secure
computation community has been that the reliance of XOR-homomorphic
commitments for all circuit wires hinders actual practical efficiency. In this
work we thoroughly investigate the practical efficiency of the LEGO approach
and, in contrast to earlier beliefs, we demonstrate that it is indeed among the
most practical protocols to date for general secure 2PC using garbled circuits.

Our Contributions

We implement the TinyLEGO protocol with added support for both inde-
pendent and dependent preprocessing. Furthermore, our protocol supports
fully reactive computation, meaning that when a function result has been
obtained, another function depending on this result can be evaluated. Also,
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Setting Ind. Dep. Online Online
Preprocessing∗ Preprocessing Latency Throughput

Single Execution
1 x AES-128 89.61 ms 13.23 ms 1.46 ms 1.46 ms
1 x SHA-256 478.54 ms 164.40 ms 11.19 ms 11.19 ms

Amortized
128 x AES-128 14.85 ms 0.68 ms 1.15 ms 0.09 ms
128 x SHA-256 173.05 ms 12.13 ms 9.35 ms 1.09 ms
∗Not including the time to compute the initial BaseOTs.

Table 4.2: Performance summary of our protocol on a high bandwidth (10Gbit)
LAN network.

the independent preprocessing phase can be rerun at any time if additional
garbling material is necessary. As part of our prototype we also implement
the XOR-homomorphic commitment scheme of [FJNT16] and report on its
efficiency separately as we believe our findings can be of independent interest.
This is to our knowledge the first implementation of a protocol based directly
on the LEGO paradigm and of the mentioned commitment scheme. The
support for independent preprocessing is achieved from the fact that the bulk
of the computation using the LEGO approach is based on cut-and-choose of
independently garbled gates and hence only depends on the security parameter
and the number of AND gates one wishes to preprocess. The subsequent
soldering phase can then be seen as a dependent preprocessing phase where
knowledge of the circuit f is required. This multi-level preprocessing is in
contrast to previous non-LEGO protocols based on cut-and-choose of garbled
circuits in the offline/online setting where the entire offline phase depends
on the circuit to be evaluated. In more detail our main contributions are as
follows:

1. We propose a new technique for dealing with the selective-OT attack on
2PC protocols based on garbled circuits. Our technique makes use of
a globally correlated OT functionality (F∆-ROT) combined with XOR-
homomorphic commitments and a Free-XOR garbling scheme [KS08].
Using the well-known fact of Beaver [Bea95] that OTs can be precom-
puted, we can mitigate the selective-OT attack by having the circuit
constructor decommit to a single value per input bit of the evaluator in
the online phase. This ensures that if the constructor tries to cheat, the
evaluator aborts regardless of the value of his input. The technique is
general and we believe that it can be used in other 2PC protocols based
on garbled circuits as well. We also provide a more efficient instantiation
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of F∆-ROT than previously appearing in the literature by tightening the
analysis of the construction presented in [BLN+15].

2. As part of our 2PC prototype we also implement the XOR-homomorphic
commitment scheme of [FJNT16]. It is already known that this scheme
is asymptotically very efficient, but this is to our knowledge the first
time its practical efficiency has been thoroughly investigated. The result
is a very efficient scheme achieving an amortized cost of less than a
microsecond for both committing and decommitting to a random value.
To maximize performance we utilize cache efficient matrix-transposition
and inspired by the construction of [CDD+16] we use the Intel Streaming
SIMD Extension (SSE) instruction PCLMULQDQ to efficiently compute
the required linear combinations.

3. We build our LEGO prototype on top of the above-mentioned imple-
mentation which results in a very efficient and flexible protocol for
maliciously secure reactive 2PC. As our online phase consists of an op-
timal two rounds, we can securely evaluate an AES-128 with latency
down to 1.13 ms. When considering throughput we can do each AES-128
block in amortized online time 0.08 ms (considering 1024 blocks). In
applications where independent preprocessing can be utilized our offline
phase is superior to all previous 2PC protocols, in particular based on
our experiments we see a 6-54x gain over [RR16] depending on network
and number of circuits considered. If preprocessing is not applicable, for
most settings we cannot compete with the offline phase of [RR16], but
note that the difference is within a factor 1.2-3x. See Table 4.2 for an
overview of our performance in different settings and Section 4.6 for a
more detailed presentation and comparison of our results.

4.2 Preliminaries
In this section we give some of the technical background for LEGO garbling,
adopting the notation and conventions of the original TinyLEGO protocol
[FJNT15] for ease of exposition.

Circuit Conventions

We assume A is the party constructing the garbled gates and call it the
constructor. Likewise, we assume B is the party evaluating the garbled gates
and call it the evaluator. Furthermore, we say that the functionality they
wish to compute is z = f(x, y), where A gives input x and B gives input y.
We assume that f is described using only NOT, XOR and AND gates. The
XOR gates are allowed to have unlimited fan-in, while the AND gates are
restricted to fan-in 2, and NOT gates have fan-in 1. All gates are allowed
to have unlimited fan-out. We denote the bit-length of x by |x| = nA, the
bit-length of y by |y| = nB and let n = nA + nB. We will denote the bit-length
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of the output z by |z| = m. Furthermore, we assume that the first nA input
wires are for A’s input and the following nB input wires are for B’s input.

We define the semantic value of a wire-key of a garbled gate to be the
bit it represents. We will use Kb

j to denote the j’th wire key representing
bit b. Sometimes, when the context allows it, we will let Lblg , Rbrg , and Obog
denote the left input, right input, and output key respectively for garbled gate
g representing the bits bl, br and bo. When the bit represented by a key is
unknown we simply omit the superscript, e.g. Kj .

Free-XOR and Soldering

The LEGO protocols [NO09, FJN+13] and [FJNT15] all assume that the
underlying garbling scheme supports the notion of Free-XOR [KS08], meaning
that the XOR of the 0- and 1-key on any wire of any garbled gate yields the
same value, ∆, which we call the global difference. In addition to making
garbling and evaluating XOR gates virtually free, this optimization also allows
for easily soldering wires together. A soldering of two wires is a way of
transforming a key representing bit b on one wire into a key representing bit
b on the other wire. As we will see in more detail below, with Free-XOR, a
soldering is simply the XOR of the 0-keys on the two wires. Furthermore, in
order to avoid any cheating all wires of all garbled gates are committed to using
a XOR-homomorphic commitment functionality FHCOM and the solderings are
then always decomitted when needed.

As an example, assume we wish to solder the output wire of gate g onto
the left input wire of gate g + 1. In doing so we decommit the value SLg+1 =
O0
g ⊕ L0

g+1 using FHCOM. When gate g outputs the key representing the
bit b one can now learn the left b-key for gate g + 1. Specifically it can be
computed as Obg⊕SLg+1 =

(
O0
g ⊕ (b ·∆)

)
⊕O0

g ⊕L0
g+1 = L0

g+1⊕ (b ·∆) = Lbg+1.
This obviously generalizes when one wishes to solder together several wires,
e.g. if we wish to solder the output wire of gate g to the left input wire
of gate g + 1, g + 2 and g + 3, then it is enough to decommit the values
SLg+1 = O0

g ⊕ L0
g+1, S

L
g+2 = O0

g ⊕ L0
g+2, S

L
g+3 = O0

g ⊕ L0
g+3 .

It is also straightforward to evaluate XOR gates as part of the soldering:
To compute the XOR of g and g + 1 and then use this result as the left input
to gate g+ 2 we decommit the value SLg+2 =

(
O0
g ⊕O0

g+1

)
⊕L0

g+2. We see now
that Oag ⊕Obg+1⊕SLg+2 = a ·∆⊕ b ·∆⊕L0

g+2 = La⊕bg+2 as desired. In conclusion
a soldering is therefore always the XOR of the 0-keys of the wires going into
an XOR gate and the 0-key of the wire we wish to solder the result onto.
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4.3 A New Approach to Eliminate the
Selective-OT Attack

As already mentioned in Section 4.1 the selective-OT attack enables a corrupt
A to learn any input bit of B with success probability 1/2 for each bit. Prior
work has dealt with this attack in different ways, but the off-the-shelf black-
box solution has typically been the s-probe resistant matrix approach of
[LP07, sS13, LR15]. These approaches augment the evaluation circuit f → f ′

so that learning any s− 1 input bits of B in f ′ leaks nothing about the actual
input used in the original f . The downside of this approach is that the input
length of B needs to be increased to n′B > nB, which in turn results in more
communication, computation and OTs. For the approach of [LP07] and [LR15]
the increase is to n′B = nB + max(4nB, 20s/3) while for the approach of [sS13]
we have n′B ≤ nB + lg(nB) + nB + s + s · max(lg(4nB), lg(4s)). In addition
to extending the input size, experiments of [LR15] show that producing the
s-probe resistant version of f can be a computationally expensive task (up to
several seconds for 1000-bit input).

Our New Approach

We propose a new approach that combines the use of 1-out-of-2 ∆-ROTs (also
called globally correlated OTs), XOR-homomorphic commitments and the
Free-XOR technique that sidesteps the need of expanding the input size of
B as described above. We recall that ∆-ROTs are similar to Random OTs
(ROT), except that all OTs produced are correlated with a global difference
∆. In other words, for each ∆-ROT i produced, the following relation holds
for a fixed ∆: r1

i = r0
i ⊕∆ where r0

i ,∆ ∈ {0, 1}κ are uniformly random strings
known to the sender and bi ∈ {0, 1} is the uniformly random choice-bit of the
receiver who learns rbii as part of the OT protocol. Our approach is described
below and is inspired by the protocol of Beaver [Bea95] for precomputing OT.

1. The parties precompute (nB + s) ∆-ROTs such that the sender learns
(∆, r0

i ) and the receiver learns (rbii , bi) for i ∈ [nB + s]. The sender will
now commit, using the XOR-homomorphic commitment scheme, to ∆
and each r0

i . In order to verify that the sender indeed committed to the
∆ used in the OTs, the parties run a simple check in the following way:
B sends

{
(rbjj , bj)

}
j∈[nB;nB+s]

to A which in turn needs to successfully
decommit to the received values. The s OTs used for the check are
hereafter discarded. The reason why B needs to send the values to A in
the first place is that it needs to prove knowledge of the value rbjj before
it is safe for A to open it. For each of the s tests, if A did not commit to
the ∆ used in the OTs, then it can only pass the test with probability at
most 1/2 as the choice-bits of B are uniformly random. Because these
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are also chosen independently we see that the check therefore catches a
cheating A with overwhelming probability 1− 2−s.

2. If the check succeeds, A uses the ∆ learned from the OTs above as the
global difference in the Free-XOR garbling scheme. Recall that this
means that all garbling keys will be correlated in the same way as the
∆-ROTs, i.e. K1

l = K0
l ⊕∆ for all l. In particular this is the case for the

keys associated to the input of B which need to be obliviously transferred
in the online phase. In addition, in our 2PC protocol all 0-keys K0

l

have been committed to using the same XOR-homomorphic commitment
scheme as used for the OT strings r0

i and ∆.
3. Finally when B learns its real input y, it computes e = y⊕b and sends this

to A where b are the choice-bits used in the precomputed ∆-ROTs. A will
respond by decommitting the values

{
Di = K0

i ⊕ r
ei
i

}
i∈[nB]. B can now

compute its actual input keysKyi
i = Di⊕rbii = K0

i ⊕r
ei
i ⊕r

bi
i = K0

i ⊕yi ·∆.

The above approach eliminates the selective-OT attack as the only way a
corrupt A can cheat is by committing to different values r′0i 6= r0

i where
r0
i is the value sent using the ∆-ROTs. However if this is the case then
D′i ⊕ r

bi
i 6∈

{
K0
i ,K

1
i

}
and B will abort regardless of the value of his input yi.

One caveat of the above approach is that it allows a corrupt A to flip an input
bit i of B without getting caught by committing to r0

i ⊕∆ instead of r0
i . In

our 2PC protocol we eliminate this issue by ensuring that lsb(∆) = 1 and by
securely leaking lsb(r0

i ) to B. This allows B to check that the resulting key
Ki = Di ⊕ rbii indeed carries the correct value yi, by verifying that

yi = lsb(Ki)⊕ lsb(Di)⊕ lsb(r0
i )⊕ ei

= lsb(Ki)⊕ lsb(K0
i )⊕ lsb(reii )⊕ lsb(r0

i )⊕ ei
= lsb(Ki)⊕ lsb(K0

i ) .

This secure leaking is described in the VerLeak step of Figure 4.1 and the
check is carried out as part of the Eval step of Figure 4.2, both of which are
presented in Section 4.4.

On Constructing ∆-ROTs

The above technique requires (nB + s) ∆-ROTs to obliviously transfer the
input keys of B. However, current state-of-the-art protocols for OT extension
[NNOB12, BLN+15, ALSZ15, KOS15] all produce ROTs. It can be seen by
inspecting the above OT extension protocols that they all produce a weaker
variant of ∆-ROT called leaky ∆-ROT as an intermediate step. The leaky
∆-ROT is identical to ∆-ROT in that all OT pairs are correlated with a
global ∆, however a corrupt receiver can cheat and learn some bits of ∆ with
non-negligible probability. In fact, for each bit learned of ∆, the receiver
gets caught with probability 1/2, which means it can learn up to s − 1 bits
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of ∆, while the other bits remain uniformly random in its view. The work
of [BLN+15] gives a construction for ∆-ROTs of string length v from leaky
∆-ROTs of string length 22v/3 ∼ 7.33v using linear randomness extraction.
Concretely, they propose multiplying all the strings learned from the leaky
∆-ROT protocol with a random matrix A ∈ {0, 1}22v/3×v. In this work we
observe that the factor 22/3 is not tight and by applying Theorem 2 below we
can reduce the number of rows in A down to v+ s, going from a multiplicative
to an additive factor.

Theorem 2 ([ZB11], Theorem 7). Let X = x1, x2, . . . , xu be a binary sequence
generated from a bit fixing source in which l bits are unbiased and independent,
the other u− l bits are fixed or copies of the l independent random bits. Let A
be a u× v random matrix such that each entry of A is 0 or 1 with probability
1/2. Given Y = XA, then we have that

Pr
A

[ρ(Y ) 6= 0] ≤ 2v−l

where ρ(Y ) is defined as the statistical distance to the uniform distribution
over {0, 1}v, i.e. ρ(Y ) =
1
2
∑
y∈{0,1}v |Pr[Y = y]− 2−v|.

Now let u = v + s and let ∆ have length u and let ∆A have length v.
Consider an adversary B who is allowed to try to learn some of the bits of ∆ to
make ∆A non-uniform. In our setting, if an adversary B tries to learn λ bits
of ∆ it is caught except with probability 2−λ. If B is not caught then it learns
λ bit positions and the remaining bits are independent and uniform. Since we
have u = v + s, the l in the above theorem equals u− λ = v + (s− λ) when B
learns λ bits, i.e., 2v−l = 2λ−s. This implies that for all 0 ≤ λ < s it holds that
the probability that B is not caught and at the same time ∆A is not uniform
is at most 2−λ2λ−s = 2−s. Clearly, for all λ ≥ s, then the probability that B is
not caught and at the same time ∆A is not uniform is at most the probability
B is not caught, which is at most 2−s. This shows that when u = v + s then
for all B, the probability that B is not caught and at the same time ∆A is not
uniform is at most 2−s, which is negligible.

The consequence of our new analysis is that we can choose the random
matrix as A ∈ {0, 1}(v+s)×v and thus we only have to produce leaky ∆-ROTs
of length v + s instead of length 22v/3, a substantial optimization. As we
ultimately require (non-leaky) ∆-ROTs of length κ, we can utilize any of the
mentioned OT extension protocols to produce leaky ∆-ROTs of length κ+ s
and then apply the linear randomness extraction on the resulting OT-strings.
For the parameters s = 40 and κ = 128 considered in this work our refined
analysis ultimately yields an improvement of around a factor 5.6x compared
to the previous best known result of [BLN+15].
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4.4 The Protocol

As already mentioned in Section 4.1, our protocol is based on TinyLEGO
[FJNT15], but modified to support preprocessing of all garbled components
along with our new approach for dealing with the selective-OT attack of
Section 4.3. This includes removing the restriction of B choosing input and
committing to the cut-and-choose challenges before obtaining the garbling
material and solderings. As a consequence, our modifications allow for multi-
leveled preprocessing and a very efficient online phase. We give a description
of our resulting protocol in Figure 4.1 and Figure 4.2. See [FJNT15] for a
more detailed specification of the original TinyLEGO protocol. At a high level
our protocol can be broken down into four main steps.

1. The Setup phase initializes the commitment scheme. All public-key
operations of our protocol can be carried out in this initial step, including
the BaseOTs required for bootstrapping OT extension.

2. The Generate step takes as input the number of gates q, number of
inputs n and number of outputs m the parties wish to preprocess. After
sending the garbled gates and wire authenticators and committing to all
associated wires, a cut-and-choose step is run between the parties. The
wire authenticators is a gadget that either accepts or rejects a given key
(without revealing the value of the key) and it was shown in [FJNT15]
that constructing AND buckets from both garbled gates and wire authen-
ticators can significantly reduce the overall communication compared to
using garbled gates alone. After the cut-and-choose step, using the XOR-
homomorphic commitments, the parties solder the remaining garbled
gates and wire authenticators randomly into independent fault tolerant
AND buckets.

3. The Build step takes as input the circuit description f and through
the XOR-homomorphic commitments, A sends the required solderings to
glue together a subset of previously produced AND buckets so that they
compute f .

4. Finally, the Eval step depends on the parties’ inputs to f . It consists of
two rounds, first B sends a correction value e which depends on his input
y, and as a response A decommits to B’s masked input keys as well as
sending it’s own input keys directly. Finally A also decommitments to
the lsb of all output 0-keys. This allows B to evaluate the garbled circuit
and decode the final output.

We highlight that our modified protocol also naturally supports the notion
of streaming or pipelining of garbled circuit evaluation [HEKM11] which was
not the case in [FJNT15]. This can be seen by the fact that one can evaluate the
circuit f in a layered approach and using the XOR-homomorphic commitments
to glue the output of one layer onto the input of the next layer. Each of these
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The Setup step is only run once, regardless of the number of calls to Generate.
Setup(pp):

1. On input (κ, s, pg, pa, β, α, λg, λa)← pp, A and B initialize the functionality
FHCOM by sending (init, sid,A,B, κ) to it, where κ is the key-length of the
garbling scheme.

The Generate step produces q garbled AND gates which can be soldered into
circuits that in total can have n inputs and m outputs. It is possible to do multiple
calls to Generate in order to produce more garbling material.
Generate(q, n,m):

1. Let Q and A be chosen such that after running the below cut-and-choose
step, with overwhelming probability (qβ+nλg) garbled gates and (qα+nλa)
wire authenticators survive.

2. A and B invoke F∆-ROT (n+ s) times from which A learns ∆ and random
strings r0

i and B learns the choice-bits bi and rbi
i for i ∈ [n+s]. Furthermore,

A instructs F∆-ROT to ensure that lsb(∆) = 1.
3. Next, A garbles Q AND gates and constructs A wire authenticators using ∆

and sends these to B.
4. A then commits to each wire of the garbled AND gates, each authenticated

wire produced, ∆, the 0-strings received from F∆-ROT, and m+ s random
values

{
vj
}

[m+s]. Thus it sends 3Q+A+ 1 +n+ s+m+ s values to FHCOM.

VerLeak:

5. For i ∈ [n] and j ∈ [m+ s], A sends lsb(r0
i ) and lsb(vj) to B.

6. B challenges A to send, using FHCOM, s random linear combinations of r0
i , vj

and ∆ for i ∈ [n] and j ∈ [m]. Also, the l’th combination is set to include a
one-time blinding value vm+l for l ∈ [s].

7. B verifies that lsb of the received s values correspond to the same linear
combinations of the initial lsb values sent by A in step 5. In addition, if ∆ is
included in a linear combination B flips the value. This ensures that indeed
lsb(∆) = 1.

Cut-and-Choose:

8. After receiving the garbled gates (wire authenticators), B chooses to check
any gate (wire authenticator) with probability pg (pa). B then challenges
A to send, using FHCOM, two random inputs and the corresponding AND
output of the selected garbled gates and a random input of the selected wire
authenticators.

9. B evaluates the selected garbled gates and wire authenticators and checks
that they output the received output key and that they verify the values
received from FHCOM, respectively.

10. In addition, for i ∈ [n;n+ s] B sends rbi
i = r0

i ⊕ (bi ·∆) to A which in turn
instructs FHCOM to send back the same value. This is to ensure that the
committed ∆ is the one used in F∆-ROT.

Figure 4.1: The modified TinyLEGO protocol with support for preprocessing
in the (FHCOM, F∆-ROT)-hybrid model (Part 1).
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Generate(q, n,m) (continued):
Bucketing:

11. For the remaining garbled gates (wire authenticators), B samples and sends
a random permutation that fully describes how these are to be combined
into q AND buckets of size β + α, n input buckets of size λg and n input
authenticators of size λa.

12. A then sends, using FHCOM, all the required solderings such that for all
the specified bucket gadgets, each component is defined with the same
input/output keys.

The Build step uses the garbling material created in Generate to construct a fault
tolerant garbled circuit computing f .
Build(f):

1. A instructs FHCOM to send the required solderings such that the first |f |
unused AND buckets correctly compute f . This includes the solderings to
attach nA input buckets and n input authenticators onto the final garbled
circuit.

In the Eval step the parties transfer to B all input keys in an oblivious manner which
then allows B to evaluate and decode the garbled circuit previously constructed
using the Build step.
Eval(x, y):

1. For input y ∈ {0, 1}nB , B sends e = b⊕ y to A, where b is the first nB unused
choice-bits of F∆-ROT.

2. A then instructs FHCOM to send to the values
{
Di = r0

i ⊕K0
i ⊕ ei ·∆

}
i∈[nB]

where K0
i is the 0-key on the i’th input wire of B and r0

i is the first unused
∆-ROT string. Also, for the input x ∈ {0, 1}nA , it sends the corresponding
input keys {Kxi

i }i∈[nA] directly to B.
3. Finally, A instructs FHCOM to send the output decoding values{

Dj = v0
j ⊕K0

j

}
j∈[m] to B where K0

j is the j’th output 0-key of the garbled
circuit and

{
vj
}
j∈[m] are the first m unused blinding values setup in the

VerLeak step.
4. Upon receiving the above, for i ∈ [nB] B computes KnA+i = rbi

i ⊕Di and
lsb(K0

i ) = lsb(Di)⊕ lsb(r0
i )⊕ ei and verifies that lsb(KnA+i)⊕ lsb(K0

i ) = yi.
Then using the input authenticators, B also verifies that the keys {Ki}i∈[nA]
of A are valid input keys to the garbled circuit.

5. If everything checks out, B evaluates the previously constructed garbled
circuit on the input keys (K1,K2, . . . ,Kn) to obtain the output keys
(Z1, Z2, . . . , Zm). For j ∈ [m] it then computes dj = lsb(vj) ⊕ lsb(Dj)
and decodes zj = lsb(Zj)⊕ dj . Finally, B outputs z = (z1, z2, . . . , zm).

Figure 4.2: The modified TinyLEGO protocol with support for preprocessing
in the (FHCOM, F∆-ROT)-hybrid model (Part 2).
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layers can be processed on the fly with our protocol and in this way the circuit
never needs to be stored entirely at any given time. This approach is similar to
that proposed in [MGBF14] for reusing garbled values, however in this setting
everything works out-of-the-box due to the XOR-homormophic commitments
on all circuit wires.

The LEGO approach also has the advantage compared to traditional cut-
and-choose protocols that only a single fault tolerant garbled circuit is produced
and evaluated. This removes the necessity of ensuring input consistency for all
the evaluation circuits. It also sidesteps the overhead of transferring multiple
sets of input keys in the online phase, one set for each evaluation circuit.

Bucketing

With the bucketing approach of [FJNT15] each AND bucket consists of β
garbled gates and α wire authenticators. For any garbled gate (wire authen-
ticator) the probability pg (pa) is used to determine if it is checked in the
cut-and-choose or not. The value of pg and pa therefore induces a certain sense
of “quality” level of the remaining non-checked garbled components which
affects the required bucketing size. In addition there are also the special cases
of input buckets and input authenticators, which are buckets that consist of
garbled gates only (size λg) and wire authenticators only (size λa), respectively.
These are attached to the input wires of the final garbled circuit and serve
to guarantee validity of the input keys, along with guaranteeing that B can
always learn the final output f(x, y), even if A is cheating. This is so since
the input buckets can be seen as a trapdoor that together with the global
difference ∆ allows B to extract the input x of A. It is then clear that it can
compute f(x, y) directly. These special buckets are necessary as our regular
AND buckets do not rule out outputting both the 0 and 1-key (say if one of
the garbled gates in the bucket is in fact a NAND gate). However, if a bucket
outputs two distinct keys it is guaranteed that they are both valid and hence
their XOR is ∆ and B can extract x. If no cheating is detected then the input
buckets are simply ignored by B.

As already established in the original LEGO paper [NO09], the number
of AND gates q directly affects the required size of the buckets, meaning that
as q grows the required bucket size can be decreased while still retaining the
same level of security. Theorem 3 below gives a direct way of computing the
success probability of a corrupt A given the parameters q, n, β, α, λg, λa.
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Theorem 3 ([FJNT15], Lemma 9). Given the bucketing parameters q, n, β,
α, λg, λa for the case where α = β − 1 we can bound the probability of the
bad bucketing events occurring as:

Pr[Any bad bucket] ≤

q ·
( 1∏

i=β

( (1− pg)4i
pg(qβ + nλg) + (1− pg)4i

)
+

β∑
l=2

l∏
i=β

( (1− pg)4i
pg(qβ + nλg) + (1− pg)4i

)
·

α+2−l∏
j=α

( (1− pa)2j
pa(qα+ nλa) + (1− pa)2j

))

Pr[Any bad input authenticator] ≤

n ·
dλa2 e∑
v=1

v∏
l=λa

( (1− pa)2l
pa(qα+ nλa) + (1− pa)2l

)

Pr[Any bad input bucket] ≤

n ·
dλg2 e∑
l=1

l∏
i=λg

( (1− pg)4i
pg(qβ + nλg) + (1− pg)4i

)

Based on Theorem 3, given the number of AND gates q and the number of
inputs n we directly compute the optimal choices of β, α, λg, λa for minimizing
the overall communication of the protocol while still guaranteeing a negligible
upper bound on the success probability of a corrupt A. This is a once and for
all computation so for our implementation we have precomputed a table of
secure choices using a simple script which is looked up on runtime when q and
n have been decided. We note that it is also possible to minimize for lowest
possible bucket size if desired. This has the effect of reducing the computational
overhead in the online phase at the price of increasing both communication
and computational overhead in the independent preprocessing phase. In our
experiments in Section 4.6 we solely minimize for overall communication.

Security

Our protocol is similar to the TinyLEGO protocol in [FJNT15] and the proof
follows the same general outline. We will therefore only give a very brief sketch
of the overall proof strategy and then describe how to deal with the changes
we made relative to TinyLEGO.
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Consider first the case where the garbler A is corrupted. As is typically
the case it is easy to see that the communication of the protocol does not
leak any information on the input of B as long as the protocol does not
abort. The garbler A might however give wrong input to some of the OTs
used by B to choose its input keys, giving rise to selective errors where the
abort probability depends on the input of B. The garbler A might also create
some bad garbled gates which could a priori result in an abort or a wrong
output, which might both leak information on the input of B. The problem
with bad gates is handled exactly as in [FJNT15], by setting the cut-and-
choose parameters and bucket sizes appropriately. We however handle the case
with bad inputs to the OTs differently, as described below. In the universal
composability (UC) framework [Can01], when A is corrupt, we also need to
be able to extract the input of the corrupted A from its communication and
input to ideal functionalities (OT and commitment). We handle this exactly
as [FJNT15]: the cut-and-choose ensures that most key authenticators only
accept their two corresponding committed keys. For a good key authenticator
the accepted key can then be compared to the committed values to compute
its semantic value. The bucket size has been set such that there is a majority
of good key authenticators on all input wires. This allows to compute the
semantic of any accepted key by taking majority.

Consider then the case where the evaluator B is corrupted. As is typically
the case, the communication clearly does not leak information to B about the
input of A. All that is left is therefore to describe how to handle two technical
requirements imposed by the UC framework. First, we have to describe how to
extract the input y of a corrupted B. Second, after learning y and z = f(x, y)
we must enforce that the simulated protocol constructs a circuit that evaluates
to z. This must be done without knowing x. Extracting y is handled exactly
as in [FJNT15]. We simply inspect which choice bits B uses in the OTs for
selecting its input. Hitting z in the simulation is also handled exactly as in
[FJNT15]. We simply construct the circuit correctly and run with input 0 for
A. This gives a potentially wrong output z′ = f(0, y). We patch this by giving
appropriately chosen wrong output decoding information by opening a wrong
least significant bit of the output key for the output wires i where z′i 6= zi. This
is possible as the simulator controls the ideal functionality for commitment in
the simulation.

We now focus on the changes we made to [FJNT15].

Change 1 In both protocols the output decoding information consists of the
least significant bit of the output keys, securely leaked via the
commitment scheme. However, the implementation differs. We
use a non-interactive implementation which is slightly heavier on
communication. In [FJNT15] they use an interactive protocol with
less communication.

Change 2 In [FJNT15] they let B commit to the cut-and-choose challenges
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and choose his input via OT before obtaining the garbled gates, wire
authenticators and solderings. We have removed this step. Now B
picks his input after the circuit is constructed and does not commit
to his challenges.

Change 3 In our protocol we take the global ∆-value output by the OT
extension and reuse it as the global ∆ in the Free-XOR garbling
scheme. In [FJNT15] they use two independent values.

Change 4 We protect against selective error on the input of B by using the
same ∆ in OT extension and garbling and using a ∆-ROT to offer
the input keys to B. We also leak the least significant bit of the
∆-OT 0-strings to B for all his input wires. In [FJNT15] a different
technique was used.

Change 1 does not affect security. It was introduced to give better execution
time for typical circuits.

We now address Change 2. The reason why B commits to the cut-and-choose
challenges and chooses his input via OT before obtaining the garbled material in
[FJNT15] is that security is proven via a reduction to a standard (non-adaptive)
selective garbling scheme (e.g. [BHR12b]), where the adversary in the security
game must supply its input before it gets the garbled circuit. Therefore they
need to be able to extract the input and cut-and-choose challenges of B before
assembling the garbled circuit in the simulation. We have skipped this step
as it would prevent independent preprocessing. Now that we assemble the
circuit before B picks its input, the hope would be that we could do a reduction
to an adaptive garbling scheme. However, due to the soldering approach of
LEGO where the XOR of 0-keys are sent to the evaluator before the input
is determined, it is unclear how to reduce security to the standard notion of
adaptive garbling, as some of these 0-keys are not known to the simulator.
To overcome this we instead identify the defining property we need from the
underlying garbling function which is that the outputs of the hash function
appear random as long as the inputs are all unknown and have sufficient
entropy, even if the inputs are related. A non-extractable, non-programmable
random oracle clearly satisfies this property [BR93]. The type of garbling
scheme considered in this work [ZRE15] could in principle be made adaptively
secure by using a programmable random oracle using techniques described in
[BHR12a, LR14].1 We avoid using the programability of the random oracle
by changing the usual approach a little. Normally security proofs need to
program the circuit to hit the right output. We instead garble the circuits
correctly and then program or equivocate the output decoding information to
decode to the value we need to hit. Specifically we use equivocation of the UC
commitment scheme to incorrectly open the least significant bit of the output

1It is also possible to build an adaptively secure garbling scheme (with short input keys)
using a non-programmable random oracle [BHK13], but this particular scheme is not as
efficient as the one of [ZRE15].
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keys when we need to hit a different value. Returning to the simulation, we
therefore garble all gates and answer all cut-and-choose challenges honestly.
As we now know all garbling keys we can also open consistently to differences
between 0-keys for the remaining evaluation gates. Finally, in order to make
the complete soldered garbled circuit “hit” the output z we equivocate the
openings of the least significant bits of the output keys such that this becomes
the decoded value. This is possible as the decoding information is only opened
after we extract the input of the corrupt receiver. If the garbling is done using
a random oracle this will have the same distribution as in the protocol.

For Change 3 we again use that we are in the random oracle model. The
first step in the proof will be to go from the case where ∆ is reused in the
garbling scheme to the case where an independent ∆′ is used for garbling
as in [FJNT15]. In this hybrid we also let A commit to ∆′. We then use
equivocation of the commitment scheme to make the cut-and-choose proof
that ∆′ = ∆ go through. Since B only sees one key for each wire and has high
entropy on ∆ and ∆′, this change will be indistinguishable to B if the output
of the hash function appears random as long as the inputs are all unknown and
have sufficient entropy, even if inputs are related. As above, a non-extractable,
non-programmable random oracle clearly satisfies this property.

We finally address Change 4. Using a ∆-ROT to offer the input keys to B
ensures that when A inputs the keys to the OT, either both are correct or both
are incorrect. If both are incorrect, it will be detected by a key authenticator
independently of the input of B. This means that the only remaining attack
vector is for A to swap the two correct keys. This is detected by B as B knows
the least significant bit of the ∆-ROT 0-strings and the two correct keys have
different least significant bits. Again the detection is independent of the input
of B. Notice that the output decoding information is sent to B using FHCOM
after he sends his input correction value e, so we can equivocate it to hit the
correct output z. This, together with the fact that the outputs of the hash
function appear random, is why it is secure to perform the VerLeak step before
learning the input of B.

As argued above, our modified protocol can be proven secure in the non-
extractable, non-programmable random oracle model following the proof of
[FJNT15]. As we do not require programmability of the random oracle we
conjecture that our protocol can be proven secure in the standard (OT hybrid)
model using the recently proposed ICE framework of [FM16], an extension of
the UCE framework of [BHK13]. However, we note that it does not seem like
our scheme can be proven secure using the UCE framework as in our setting
all the garbled gates are related (all garbled with the same ∆) and therefore a
single leakage phase as prescribed in the UCE framework seems insufficient.
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4.5 Implementation

In this section we highlight some of the more technical details of our imple-
mentations of the XOR-homomorphic commitment scheme and our final 2PC
protocol supporting independent preprocessing. The source code of the project
can be found at https://github.com/AarhusCrypto/TinyLEGO.

UC-Secure XOR-Homomorphic Commitments

As part of our full 2PC prototype we implement the XOR-homomorphic
commitment scheme of [FJNT16] as a separate subprotocol. This is to our
knowledge the first time a scheme following this OT + PRG blueprint has
been implemented and we believe our experimental findings are of independent
interest. At a high level, the scheme works by the parties initially doing n
BaseOTs of security parameter κ-bit strings, where n is the code-length for
some linear error correcting code C with parameters [n, κ, s]F2 with κ being the
bit-length of the committed messages. The parties then expand the received
κ-bit strings into bit-strings of length γ using a PRG which then define the γ
random commitments the sender is committing to. Next, the sender sends a
correctional value for each produced commitment to turn these into codewords
of C. Finally, to ensure that the sender sent valid corrections, the receiver
challenges the sender to decommit to 2s random linear combinations of all
produced commitments. This is done in a way such that no information is
leaked about the γ committed values. Additively homomorphism then follows
from the fact that the code C is linear and all operations on the expanded PRG
strings are linear as well. We highlight the fact that any XOR homomorphic
commitment scheme supports the notion of batch opening/decommitment
which is similar in nature to the above consistency check. The idea is that
the sender initially sends the decommited values directly to the receiver, who
hereafter challenges the sender to decommit to s linear combinations of the
postulated values where s is the statistical security parameter. Notice that it
is only in the initial commit step that 2s combinations are necessary. If the
decommitted values match the linear combinations of the postulated values,
the receiver accepts. As now only s values are decommitted this approach has
the benefit of making the communication overhead independent of the number
of values decommitted to. For the full details we refer to [FJNT16].

We implement the above scheme in C++14 taking advantage of multi-core
capabilities and Intel SSE instructions. We can therefore base the PRG on AES-
NI in counter mode and for the error correcting code we use a modified version
of the linux kernel implementation of the BCH code family [Hoc59, BRC60].
As part of the commitment step the parties are required to transpose a binary
matrix S ∈ {0, 1}n×γ in order to efficiently address the committed values in
column-major order. As γ in our case can be huge (> 220 Mio. for 2000
AES-128 computations) we use the efficient implementation of Ekhlund’s
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cache-efficient algorithm for binary matrix transposition [Ekl72] presented in
[ALSZ13, ALSZ15].2 As a side note we also augment the OT extension code
to support the randomness extraction technique described in Section 4.3 to
implement the F∆-ROT functionality needed in our 2PC protocol.

During the development of our implementation we identified the main
computational bottleneck of the scheme to be the computation of the random
linear combinations. Even if these operations are based on mere XORs,
when implemented naively, the number of required instructions is still γs in
expectation. Therefore, inspired by [CDD+16], we use a different approach for
computing the consistency checks using Galois field multiplication. Combined
with efficient matrix transposition the effect of using GF(2l) multiplication
can be seen as computing l linear combinations in parallel. For our particular
setting we set l = 128 as this is the smallest power of 2 greater than the required
2s for s = 40. We can then use the Intel SSE instruction PCLMULQDQ to
very efficiently compute the GF(2128) multiplications. In detail, our approach
to compute the checks is as follows:

1. Given a random challenge element α ∈R GF(2l) the matrix S of com-
mitted values in column-major order is split into u = dS/le blocks
Bi ∈ {0, 1}n×l. Each block is then transposed into row-major order.

2. For i ∈ [u] and j ∈ [n], the new matrix B′i = Bj
i · αi is computed where

Bj
i ∈ {0, 1}l is the j’th row of Bi interpreted as an element of GF(2l).

3. Finally, the combined matrix B′ =
∑u
i=1B

′
i is produced and transposed

back into column-major order.

Each column of B′ can now be seen as a random linear combination of
all values of S. As a further optimization we see that most GF elements are
only multiplied a single time in the above and we can therefore postpone the
expensive degree reduction step of the multiplication until B′ has been fully
computed. This is different for computing αi which we therefore reduce at each
iteration. In total the required number of degree reductions becomes n+ u as
opposed to (n+ 1)u. Our experiments show that using the above method of
computing 128 linear combinations compared to the naive approach is between
10-13x faster starting at a moderate number of random commitments γ > 8000.

As our implementation of the XOR-homomorphic commitment scheme
might be of independent interest we here present our observed timings for
committing and decommitting to γ random bit-strings of length 128 with
κ = 128 and s = 40. We instantiate the binary BCH code with parameters
[312, 128, 41] and for convenience we use the implementation of [ALSZ15]
augmented with our randomness extraction technique to compute the required
312 Random OTs. In total this takes about 1400 ms with our implementation,
where 1392 ms are due to the BaseOTs (using PVW [PVW08]). From the
timings reported in [CO15] we predict that this initial setup step can be done

2Available at https://github.com/encryptogroup/OTExtension
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γ #Threads Commit [µs] Decommit [µs]

500 1 7.21 (2815.28) 2.20
1000 2 3.85 (1401.83) 1.40

15 000 4 0.64 (93.99) 0.34
50 000 8 0.57 (28.49) 0.22

500 000 20 0.45 (3.25) 0.17
10 000 000 200 0.21 (0.35) 0.14

200 000 000 400 0.20 (0.21) 0.14

Table 4.3: Timings for committing to γ strings of length 128 bit with s = 40.
All timings are µs per commitment. The commit time in parentheses includes
the cost of the initial BaseOTs.

much faster (around 20 ms) using their implementation, but since this requires
a programmable random oracle assumption and this cost amortizes away as γ
grows we did not pursue this. Also, if the commitment scheme is used in an
application that already relies on oblivious transfer, OT extension can be used
to produce the starting BaseOTs at very low cost. We report our findings in
Table 4.3. As the scheme requires n BaseOTs to setup we include this cost
in the commit timings in parentheses. It can thus be seen by comparing the
commitment numbers how the initial OT cost amortizes away as γ increases.
As there is no initial cost associated with decommitment these timings are
only affected by the number of worker-threads we spawn. Furthermore, these
experiments were performed on the local LAN setup described in Section 4.6
and not on the Amazon Web Services (AWS) architecture.

2PC with preprocessing using LEGO

We implement the TinyLEGO protocol with our modifications on top of
the previously described commitment scheme. The code is also written in
C++14 and makes heavy use of parallelism and Intel SSE instructions for
garbling and evaluation of the garbled gates. At a high level, the Generate
step is implemented by first partitioning the inputs (q, n,m) into t equally
sized subsets for some parameter t. The main thread then starts t parallel
executions of the generate step with two synchronization points, one where
the commitment to ∆ is sent (which only one execution is charged with),
and one after the cut-and-choose step. The latter is necessary as the random
permutation that describes the initial bucketing must only be revealed after
all garbled components have been sent to B. We emphasize that it is due to
our preprocessing being independent of the structure of f that we can trivially
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parallelize the above step using any number of threads t. Due to the above
design we also run t executions of the commitment scheme, however for the
PRG expansion we use the same seed OT values in all executions. As the PRG
is based on a block cipher in counter mode this is not an issue as execution
i+ 1 sets it’s counter sufficiently high compared to the i’th execution so there
is no overlap. Since they all use the same seed OTs the choice-bits are also the
same across all executions and they can therefore be combined in the same
way as for a single execution.

The Build and Eval phases follow roughly the same design pattern as
above. We note however that in these phases each thread is responsible for
soldering and evaluating an entire circuit. The garbling and evaluation of
garbled gates and wire authenticators are implemented purely as 128-bit SSE
instructions to maximize performance. We base the hash function for garbling
gates and producing wire authenticators on Fixed-Key AES-NI as advocated
in [BHKR13]. This choice is mainly motivated by producing as comparable
results as possible to previous works that are also based on Fixed-Key AES-NI.

The Eval phase consists of two rounds, one where B specifies the input
mask and one where A replies with its keys and decommitments. A’s reply has
communication complexity κnA for A’s input keys and (n+ κ)(nB +m) for the
decommitments of B’s input keys and the lsb masks of the output keys, where
n is the code-length of the BCH code. We note that the communication cost
of the decommitments can be reduced to (n+κ)s+κ(nB +m) using the batch
decommit approach mentioned in Section 4.5, but at the cost of adding an
additional round. For the circuits used in our experiments (AES-128, SHA-256)
we observed a loss of around a factor 1.25 in the LAN setting and much more
in the WAN setting with this approach. Still, for other circuits where the ratio
(nB+m)/|f | is substantial and both network latency and bandwidth are low we
suspect that adding this extra round can pay off. Finally if one is willing to
assume a programmable random oracle the online cost for the output bits can
be eliminated entirely as the simulator then can program the oracle to output
matching output keys for a preprocessed decommitment lsb-bit once it learns
the final output.

4.6 Performance

To give a broad view of the performance of our prototype we run experiments
in a local LAN setting and on both a LAN and WAN on the Amazon Web
Services (AWS). In more detail:

Local LAN with two machines, one acting as A and the other acting as B.
We measured a total bandwidth of 942 Mbits/sec with round trip time
(rtt) 0.12 ms. Both machines run Ubuntu 16.04 with an Intel Ivy Bridge
i7 3.5 GHz quad-core processor and 32 GB DDR3 RAM.
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AWS LAN with two c4.8xlarge instances located in the Virginia region
connected via a high performance LAN. We measured a bandwidth of
9.52 Gbits/sec with rtt 0.16 ms. Both machines run Amazon Linux AMI
2016.03.2 with an Intel Xeon E5-2666 v3 (Haswell) processor with 36
vCPUs and 60 GB RAM.

AWS WAN with two c4.8xlarge instances, one in Virginia and one in Ireland.
We measured a bandwidth of 214 Mbits/sec on average for a single
TCP connection and up to 3.17 Gbit/sec when running many parallel
connections. The rtt measured was 81.32 ms. Both machines run Amazon
Linux AMI 2016.03.2 with an Intel Xeon E5-2666 v3 (Haswell) processor
with 36 vCPUs and 60 GB RAM.

For all settings the code was compiled using GCC-5.4 with the -O3 opti-
mization flag set. As mentioned in Section 4.5 the implementation used for
the BaseOTs are based on [ALSZ15] using PVW [PVW08]. If one is willing to
assume a programmable random oracle, these can be replaced with the fast pro-
tocol and implementation of [CO15] and we would expect a total cost around
20 ms as opposed to 850 ms (AWS LAN) with the current implementation.

Our Performance Results

We summarize our measured results in Table 4.4 for the three above-mentioned
settings. All numbers reported are averages of 10 executions. Not surprisingly
we see the best performance on the AWS machines in the LAN setting where
we can evaluate an AES-128 circuit with latency 1.13 ms or 0.08 ms throughput
per AES-128 in the online phase. We also see that when considering 1024 AES-
128 evaluations the dependent preprocessing + the online phase is below 2 ms.
When including the cost of the independent preprocessing each AES-128 can
be done in total time less than 16 ms. Similarly when considering 256 SHA-256
evaluations the online phase can be done with latency 9.14 ms or 1.05 ms of
throughput per SHA-256. Also the dependent preprocessing + online phase
and total cost is below 22 ms and 205 ms, respectively (when preprocessing
material enough for 256 SHA-256 evaluations).

For the single execution setting we see a significant increase in execution
time for the dependent preprocessing compared to above. This is due to the
design of our prototype which only uses multiple execution threads in the
dependent preprocessing and online phases if several, possibly different, circuits
are processed at the same time. We also note that our prototype requires
a large amount of RAM as we store all garbling material and commitments
in-memory. This design choice is due to convenience, but for a deployed system
based on the LEGO approach this should be addressed using external memory
sources with support for pipelined evaluation as described in Section 4.4.

For the AWS WAN setting we see that a single execution of AES-128
takes around 83 ms online time where almost all of the runtime is spent
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waiting due to a latency of ∼81 ms. The latency also severely impacts the
two preprocessing phases where the independent preprocessing takes around
1882 ms (20x compared to AWS LAN) and the dependent offline phase takes
96 ms (7x compared to AWS LAN). However this overhead can be somewhat
mitigated when considering several circuits, down to a factor 2-4x compared to
AWS LAN due to the computation and communication being more interleaved
and better utilization of the bandwidth with several TCP connections.

Finally in Table 4.5 we report on the amount of data our prototype transfers
from the circuit constructor to the circuit evaluator for both AES-128 and
SHA-256. For clarity we have not included the communication from evaluator
to constructor, but note that for 1024 AES-128 and 256 SHA-256 a total of
8.12 MB and 4.09 MB are transferred, respectively, and for both cases around
99% of the communication stems from the initial BaseOTs. The table also
summarizes the bucketing parameters used in our experiments, which have
been chosen so that the probability bound given by Theorem 3 in Section 4.4
is negligible. Also we set the two input bucket parameters λg = 2β + 1 and
λa = 2α + 1 which ensures a correct majority for all the input buckets and
authenticators except with negligible probability. For the data numbers in
Table 4.5 it can be seen in parentheses how the relative preprocessing cost of a
circuit decreases as more evaluations are considered. We highlight that in this
work (and previous LEGO protocols) this is due to the increasing number of
gates produced, not by the number of circuits. As an example of this effect,
going from a single AES-128 with 6928 gates3 to 1024 AES-128 with 7 094 272
gates decreases the cost of the independent preprocessing by a factor 2.3x
per AES-128, from 14.94 MB to 6.42 MB. It is worth noting that the “LEGO
effect” only applies to the independent preprocessing. This is because in the
subsequent dependent preprocessing step two solderings (κ bits each) are sent
per gate of the circuit f and not for each garbled gate produced. In addition a
small constant 2.2 kB of decommitment data is transferred in this phase for
the s challenge linear combinations. For the online step the communication
consists of nAκ bits for the constructors input + (n+ κ)(nB +m) bits for the
decommitments to the evaluators input and the output decoding bits where n
is the code-length of the ECC C used in the commitment scheme. In Section 4.5
we discussed how this could further be reduced to (n+ κ)s+ κ(nB +m) at the
price of adding an extra round to the online phase.

Comparison with Related Work

We compare our measured timings to those reported in the recent works
of [LR15] and [RR16], both of which are solely applicable in the amortized
setting. In contrast our protocol can naturally handle the single execution

3We use the AES non-expanded circuit of [ST] which has 6800 AND gates. However we
augment the circuit with identity gates on the 128 output wires in order to simplify output
decoding using VerLeak.
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Protocol Setting Number
Ind.

Preprocessing Offline Online

[LR15]

AWS LAN
32 7 197 12
128 7 114 10
1024 7 74 7

AWS WAN
32 7 1126 163
128 7 919 164
1024 7 759 160

[RR16]

AWS LAN
32 7 45 1.7
128 7 16 1.5
1024 7 5.1 1.3

AWS WAN
32 7 282 190
128 7 71 191
1024 7 34 189

This Work

AWS LAN
32 54.52 0.85 1.23
128 21.5 0.68 1.15
1024 14.68 0.74 1.13

AWS WAN
32 235.75 5.19 83.21
128 95.75 3.96 83.65
1024 42.14 2.12 83.15

Table 4.6: Comparison of the reported timings for AES-128 in the AWS LAN
and AWS WAN setting with κ = 128 and s = 40. The preprocessing column
includes the cost of the BaseOTs for This Work. All timings are ms per
AES-128. Best results marked in bold.

setting, along with a more general amortized setting where several distinct
functions can be preprocessed in the same batch. However to make a meaningful
comparison we focus on the “traditional” amortized setting considering 32,
128, and 1024 AES-128 computations and we summarize the comparison in
Table 4.6. The independent preprocessing timings for our protocol consists
of the BaseOTs + the independent preprocessing. The first thing to notice
is that for applications where independent preprocessing is applicable, and
can therefore be disregarded, our dependent offline performance is superior
to both prior works for any number of AES-128 computations by a large
margin. Compared to [LR15] our reported timings are better by 100-358x
depending on the setting and number of circuits. For [RR16] the gap is smaller,
but still substantial, namely by 6-54x. For applications where independent
preprocessing can not be utilized we are still superior to the work of [LR15],
but for most settings and number of circuits we cannot compete with the offline
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phase of [RR16]. However the differences are typically within a factor 1.2-3x.
For the online timings in the AWS LAN setting for AES-128 we measure

faster overall timings than [RR16] for all number of circuits by a tiny margin.
As the differences are less than half a millisecond we believe the only reasonable
thing to conclude is that the online times are comparable. Though when looking
at raw throughput we outperform [RR16] by more than a factor 3x (0.08 ms
vs. 0.26 ms). Going beyond Table 4.6 and considering the larger SHA-256
circuit we note that our online phase is not faster than [RR16] (9.35 ms vs.
8.8 ms for 128 circuits). This is again due to the design of our prototype that
uses a single execution thread in the online phase per circuit, while [RR16]
uses several threads. We therefore see it as an interesting problem for future
research to tailor the LEGO online phase to better exploit parallelism for a
single circuit.

With regards to online latency in the AWS WAN setting there is however
no doubt that our two round online phase outperforms both [LR15] and [RR16].
This is directly related to the previous protocols having more rounds which in
a high latency network significantly decreases performance. For comparison
[LR15] has a 4 round online phase and [RR16] has 5. One thing to note
however is that [RR16] delivers output to both parties in 5 rounds, whereas
both our work and [LR15] would need an extra round to support this. Also
the implementation of [LR15] is written in a mix of Java and C++ using JNI
which definitely adds overhead to the running time. It is however unclear how
much of a speedup a native implementation would achieve, but we suspect it
would be substantial. The implementation of [RR16] is written solely in C++
and according to the paper also takes full advantage of parallelization.

In Table 4.7 we summarize the required communication for the previously
considered protocols and our work for the same setting as Table 4.6. As was the
case for the measured timings, when disregarding the cost of the independent
preprocessing, our protocol requires significantly less communication in both the
offline and online phase compared to the previous works. For the offline phase
the communication is 5-12x less than [RR16] and 16-358x less than [LR15].
If the independent preprocessing is included as part of the offline phase our
protocol however requires transferring more raw data than the previous two
works for any of the considered number of circuits. However this is only so
because we are considering multiple copies (32, 128, and 1024) of the same
function AES-128. If we instead consider settings with few copies (the larger
the better), a single copy, or several different circuits, the amount of data
received in the independent + dependent preprocessing phase of our protocol
can match or be lower than the dependent offline phase of [RR16], depending
on the circuit sizes and number of circuits considered. Also, as [RR16] uses
the dual-execution paradigm where both parties send and receive the same
amount of data, the above comparison is only meaningful assuming a full-
duplex channel which might not always be available. Finally, even if the
amount of data received by the evaluator in our protocol is up to ∼4x that of
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Protocol Number Ind. Preprocessing Offline Online

[LR15]
32 7 8.13 MB 312 kB
128 7 5.45 MB 238 kB
1024 7 3.76 MB 170 kB

[RR16]∗
32 7 3.75 MB 25.76 kB
128 7 2.5 MB 21.31 kB
1024 7 1.56 MB 16.95 kB

This Work
32 8.74 MB 226.86 kB 16.13 kB
128 7.22 MB 226.86 kB 16.13 kB
1024 6.42 MB 226.86 kB 16.13 kB

∗Dual-execution, so total offline communication is double
the reported numbers.

Table 4.7: Comparison of the data received by the evaluator for different
number of executions of AES-128 with κ = 128 and s = 40. All numbers are
data per AES-128. Best results marked in bold.

[RR16] in Table 4.7, due to the highly parallelizable nature of our independent
preprocessing phase, this does not translate into equivalently lower performance
as can be seen in Table 4.6.

For the online phase, our protocol is more data-efficient than the previous
works for any of the considered settings. In particular, we require sending
16.13 kB per AES which is around 1.05-1.6x less data than [RR16] and 10.5-
19x less than [LR15], depending on the number of executions considered.
Furthermore if one is willing to assume a programmable random oracle, as is
already the case of both [RR16] and [LR15], our online phase can easily be
modified to only sending 6.30 kB (using 3 rounds) or 9.09 kB (using 2 rounds)
as explained in Section 4.5.

Finally as mentioned in Section 4.1 and summarized in Table 4.1 the
best reported timings for evaluating a single AES-128 is 65 ms in [WMK17].
Based on the reported numbers in their paper we estimate that ∼20 ms of
the execution time consists of the initial BaseOTs. We therefore consider the
actual cost of their protocol to be around 45 ms and motivate this by observing
that a single computation of BaseOTs can be reused for any number of future
executions using OT extension. To give as meaningful a comparison as possible
we also ran our implementation on the same AWS setup (c4.2x instance) for the
single execution AES-128 case measuring 105.7 ms of ind. preprocessing time,
12.07 ms dep. preprocessing time and 1.41 ms online time on a LAN. Therefore
our protocol performs around 2.5x times slower than theirs in total time (when
also ignoring the cost of our initial BaseOTs). However if ind. preprocessing
can be applied, then from the time the circuit is input by the parties, our
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protocol takes around 13.48 ms to evaluate, which is around 3.5x faster than
[WMK17]. We ran the same experiment in the WAN setting where we evaluate
an AES-128 in 1837 ms of ind. preprocessing time, 82.51 ms dep. preprocessing
time and 72.63 ms online time. As [WMK17] takes 1513 ms in total, when
adjusting for initial BaseOT cost the difference is about a factor 1.5x in favor
of the latter. However, when ignoring time for independent preprocessing our
protocol can perform around an order of magnitude faster. We believe this
difference in factors between LAN and WAN is due to our protocol having
fewer rounds (when ignoring our preprocessing) and our implementation fully
saturating the network as it sets up multiple parallel TCP connections for
maximal bandwidth utilization.
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Chapter 5

DUPLO: Unifying
Cut-and-Choose for Garbled
Circuits

The following chapter is based on the work of [KNR+17] and is therefore
identical (except for minor layout modifications) to the current full version
available at https://eprint.iacr.org/2017/344.

5.1 Introduction
Garbled Circuits (GC) are currently the most common technique for practical
two-party secure computation (2PC). GC has advantages of high performance,
low round complexity, low latency, and, importantly, relative engineering
simplicity. Both the core garbling technique itself and its application in
higher level protocols have been the subject of significant improvement. In
the semi-honest model, there have been relatively few asymptotic/qualitative
improvements since the original protocols of Yao [Yao86] and Goldreich et
al. [GMW87]. The more challenging task of providing security in the presence
of malicious parties has seen more striking improvements, such as reducing the
number of garbled circuits needed for cut-and-choose [LP07, LP11, sS11, Lin13],
exploring trade-offs between online and offline computation phases [HKK+14,
LR14], and exploring slight weakenings of security [MF06, KMRR15, AO12,
KM15]. These improvements have brought the malicious security setting to a
polished state of affairs, and even small-factor performance improvements are
rare.

Cut-and-choose. The focus of this work is to unify two leading approaches
for malicious security in GC-based protocols, by viewing them as extreme
points on a single continuum. We will find that optimal performance — often
significantly better than the state-of-the-art — is generally found somewhere
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in the middle of the continuum. We start with reviewing the idea of cut-and-
choose (C&C) and the two existing approaches which we generalize.

According to the “Cut-and-Choose Protocol” entry of the Encyclopedia of
Cryptography and Security [TJ11], a (non-zero-knowledge) C&C protocol was
first mentioned in the protocol of Rabin [Rab77] where this concept was used
to convince a party that the other party sent it a specially formed integer n.
The expression “cut and choose” was introduced later by Chaum in [BCC88] in
analogy to a popular cake-sharing problem: given a cake to be divided among
two distrustful players, one of them cuts the cake in two shares, and lets the
other one choose.

Whole-circuit C&C. Recall, Yao’s basic GC protocol is not secure against
a cheating GC generator, who can submit a maliciously garbled circuit. Today,
C&C is the standard tool in achieving malicious security in secure computation.
At the high level, it proceeds in two phases.

C&C phase. The GC generator generates a number of garbled circuits
and sends them to GC evaluator, who chooses a subset of them (say, half)
at random to be opened (with the help of the generator) and verifies their
correctness.

Evaluation phase. If all opened circuits were constructed correctly, the
players proceed to securely evaluate the unopened circuits, and take the
majority (or other protocol-prescribed) output.

A statistical analysis shows that the probability of the GC generator
violating security (by making the evaluator accept an incorrect output) is
exponentially small in the number of circuits n.

Significant progress has been made [Lin13, HKE13, Bra13, LR14, HKK+14]
in reducing the concrete value of n needed to achieve a given failure probability.
Specifically, if the evaluation phase of the protocol requires a majority of
unopened circuits to be correct (as in [sS11]), then ∼ 3s circuits are required in
total for statistical security 2−s. If the evaluation phase merely requires at least
one unopened circuit to be correct (e.g., [Lin13, Bra13]), then only s circuits
are required for the same security. This multiplicative overhead in garbling
material due to replication, the replication factor, in the above protocols
is 3s and s, respectively. In the amortized setting where parties perform
N independent evaluations of the same circuit, all evaluations can share a
common C&C phase where only a small fraction of circuits needs to be opened.
Here, the (amortized) replication factor per evaluation is O(1) +O(s/ logN)
for statistical security 2−s [LR14, HKK+14]. As an example, for N = 1024
and s = 40 the amortized replication factor is around 5.

LEGO. The LEGO paradigm (Large Efficient Garbled-circuit Optimiza-
tion), introduced by Nielsen & Orlandi [NO09], works somewhat differently.
First, the generator produces many independent garbled gates (e.g., NAND
gates). Similarly to the whole-circuit C&C, the evaluator chooses a random
subset of these gates to be opened and checked. Now, the evaluator randomly
assigns the unopened gates into buckets. The garbled gates in each bucket are
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carefully combined in a certain way, so that, as long as a majority of gates in
each bucket are correct, the bucket as a whole behaves like a correct logical
garbled NAND gate. These buckets are then assembled into the final garbled
circuit, which is finally evaluated.

The extra step in the LEGO paradigm of randomly assigning unopened
gates into buckets improves the protocol’s asymptotic replication factor. More
precisely, if the evaluated function has N gates, then the LEGO protocol
has replication factor 2 + O(s/ logN) for security 2−s (compared to s or 3s
for conventional whole-circuit C&C). The main disadvantage of the LEGO
approach is that there is a nontrivial cost to connect independently generated
gates together (“soldering,” in LEGO terminology). Since soldering needs to be
performed for each wire of the Boolean circuit, LEGO’s asymptotic advantages
overtake whole-circuit C&C in performance only for circuits of large size. In
Section 5.3 we give more details about the LEGO paradigm.

DUPLO: building garbled circuits from big pieces

We introduce DUPLO (DUPLO Unifying Procedure for LEGO), a new ap-
proach for malicious-secure two-party computation.

As discussed above, the two standard approaches for malicious-secure 2PC
perform C&C at the level of entire circuits (whether in the single-execution
setting or in the multi-execution setting [LR15, RR16]), or at the level of
individual gates (LEGO). DUPLO is a single unifying approach that spans the
entire continuum between these extremes. The DUPLO approach performs C&C
at the level of arbitrary garbled subcircuits (which we refer to as components).
After the C&C phase has completed, the parties can use the resulting garbled
components in any number of 2PC executions, of any (possibly different)
circuits that can be built from these components.

What is the value in generalizing C&C in this way? In short, the
DUPLO approach unlocks a new degree of freedom in optimizing practical
secure computation. To understand its role, we first review in more detail the
costs associated with the C&C techniques (including LEGO).

The most obvious (and often the most significant) cost is the GC repli-
cation factor, discussed above. When evaluating a function consisting of N
components (either entire circuits, gates, or generalized components explored
in this work), the replication factor is O(1) +O(s/ logN), for desired security
2−s. Clearly, using smaller components improves the replication factor, since
N is increased.

The replication factor converges to a lower limit of 2 [ZH17]. As the number
of components grows, the benefit of amortization quickly reaches its effective
maximum. With practical parameters, there is little improvement to be gained
beyond a few million components.
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It is when the number of components is “maxed out” that the flexibility of
DUPLO starts to have its most pronounced effect. There will be a wide range
of different component sizes that all give roughly the same replication factor.
Among these choices for component size, it is now best to choose the largest,
thereby reducing the cost of soldering, or connecting the components. This cost
is proportional to the number of input/output wires of a component (whole-
circuit C&C can be also seen this way, since we have special processing for the
inputs and outputs). When a circuit is decomposed into larger components,
a smaller fraction of wires will cross a boundary between components and
therefore require soldering.

In other words, we expect a “sweet spot” for ideal component size, and for
computations of realistic size this sweet spot is expected to be between the
extremes of gate-level and whole-circuit components. We confirm this analysis
by the empirical performance of our prototype implementation. We indeed
find such a “sweet spot” between the extremes of component size, as we start
considering computations with millions of gates. For these realistic problem
sizes, the DUPLO approach improves performance by 4-7x over gate-based
and circuit-based C&C. Details are given in Section 4.6.

Is it realistic to express computations in terms of moderately sized
components? We note that the C&C components need to garble identical
circuits, i.e. be interchangeable in GC evaluation. Indeed, all NAND gates in
LEGO and all circuits in whole-circuit C&C are interchangeable in the sense
that they are garblings of the same functionality. One may rightly ask whether
it is reasonable to expect realistic computations to be naturally decomposable
into interchangeable and non-trivial (i.e. not a single-gate or entire-circuit)
subcircuits.

We argue that this is indeed a frequent occurrence in standard (inse-
cure) computation. Standard programming language constructs (standard-
size arithmetic operations, subroutine calls, loops, etc.) naturally gener-
ate identical subcircuits. Given the recent and growing tendency to au-
tomate circuit generation and to build 2PC compilers for higher-level lan-
guages [MNPS04, HFKV12, ZE15, LWN+15, MGC+16], it is natural to pre-
sume that many practical circuits evaluated by 2PC will incorporate many
identical components. Specifically, consider the following scenarios:

• Circuits compiled from higher level languages containing multiple calls
to the same subroutine (e.g. algebraic calculations), loops, etc. For
example, a boolean circuit for matrix multiplication can be expressed in
terms of subcircuits for multiplication and addition.

• Two parties know they will perform many secure computations of a CBC-
MAC-based construction (e.g., CMAC) using AES as the block cipher,
where one party provides the key and the other provides the message to
be authenticated. They can use the AES circuit (or a CBC-composition
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of several AES circuits) as the main DUPLO component, and use as
many components as needed for each evaluation of CMAC. Another
example involving AES is to consider the AES round function as the
DUPLO component. As this is the same function used internally in
AES-128, AES-192 and AES-256 (only the key schedule and number of
rounds differ) this preprocessing becomes more independent of the final
functionality.

• Two parties agree on a predetermined low-level instruction set, where
for each instruction (represented as a circuit), the parties can produce
a large number of preprocessed garbled components without knowing
a priori the final programs/functionalities to be computed securely. This
CPU/ALU emulation setting has recently been considered in the context
of secure computation of MIPS assembly programs [SHS+15, WGMK16].
The DUPLO approach elegantly and efficiently provides a way to elevate
these results to the malicious setting.

In Section 5.7 we investigate several of these scenarios in detail, and compare
our performance to that of previous work.

Related work

Maliciously secure 2PC using Yao’s garbled circuit technique has seen dramatic
improvements in recent years, both algorithmic/theoretical and implemen-
tations. Since the first implementation in [LPS08], tremendous effort has
been put into improving concrete efficiency [LP07, NO09, PSSW09, LP11,
sS11, HEKM11, KsS12, FJN+13, Bra13, FN13, HKE13, Lin13, MR13, sS13,
HMsG13, AMPR14, HKK+14, LR14, LR15, RR16, WMK17, NST17, ZH17,
KRW17b] yielding current state-of-the-art prototypes able to securely evaluate
an AES-128 computation in 6 ms (multi-execution) or 65 ms (single-execution).
Multi-execution refers to evaluating the same function several times (either
in serial or parallel) on distinctly chosen inputs while the more general single-
execution setting treats the computation atomically. In addition, some of these
protocols allow for dividing the computation into different phases to utilize
preprocessing. In the most general case the computation can be split into three
consecutively dependent phases. Following the convention of [NST17] we have:

Function-independent preprocessing depends only on the statistical and
computational security parameters s and κ. It typically prepares a given
number of gates/components that can be used for later computation.

Function-dependent preprocessing uses the previously computed raw func-
tion-independent material and stitches it together to compute the desired
function f .

Online/Eval phase lastly depends on the parties inputs to the actual com-
putation and is typically much lighter than the previous two phases.
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Of notable interest are the protocols of [RR16] and [WMK17] which rep-
resent the current state-of-the-art protocols/prototypes for the multi- and
single-execution settings, respectively. Both protocols also support function-
dependent preprocessing. With regards to constant-round function-independent
preprocessing the works of [NST17, ZH17, KRW17b] are the most efficient,
however at this time only the work of [NST17] provides a public prototype
implementation.

In addition to the above garbled circuit approaches another very active and
fruitful research area in secure computation is the secret-sharing based pro-
tocols [NNOB12, DPSZ12, DKL+13, KSS13, DZ13, DLT14, LOS14, BLN+15,
KOS16, DZ16, DNNR17]. These protocols share a common blueprint in that
initially the parties secret share their inputs and interactively compute the
function in question. This has the advantage of being less bandwidth demand-
ing than the garbled circuit approach, but at the cost of requiring O(depth(f))
rounds of interaction to securely evaluate f . This approach also has the benefit
of usually supporting function-independent preprocessing and allowing for n
participating parties rather natively. In contrast, it seems considerably harder
adapting the garbled circuit approach to n-parties [BMR90, LPSY15, LSS16].

The idea of connecting distinct garbled circuits has also previously been
studied in [MGBF14] by mapping previous output garbled values to garbled
input values in a following computation. Their model and approach is different
from ours and is mainly motivated by enabling garbled state to be reusable for
multiple computations. Finally we point out the recent work of [GLMY16] for
the semi-honest case of secure 2PC using garbled circuits. [GLMY16] likewise
considers splitting the function of interest into sub-circuits and processes these
independently. As there is no cut-and-choose overhead in the semi-honest
setting, their approach is motivated primarily by allowing function-independent
preprocessing using the garbled components as building blocks. Although
the high-level idea is similar to ours, we apply it in a completely different
setting and use different techniques. Further, while malicious security is often
significantly more expensive, the efficiency gap in the linking and online phase
between [GLMY16] and our protocol is surprisingly small. In the application
of computing an AES-128 (by preprocessing the required round functions)
we see that [GLMY16] sends 82 kB in the online phase (link + evaluate) vs.
88 kB using our protocol. For the offline step the gap is larger due to the
overhead of C&C in the malicious case. However utilizing amortization this
can be reduced significantly and in some cases be as low as 3-5x that of the
semi-honest protocols’. We also highlight that our extension to the Frigate
compiler for transforming a high-level C-style program into Boolean circuit
sub-components should be directly applicable for this related work. To the
best of our knowledge [GLMY16] does not provide such a tool.
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Our Contributions and Outline of the Work

The main contribution of the paper is putting forward and technically and
experimentally supporting the idea of generalizing C&C protocols to arbitrary
subcircuits. Due to the generality of the approach and the performance
benefits we demonstrate, we believe the DUPLO approach will be the standard
technique in 2PC compilers. As a lower-level technical contribution, we propose
several improvements to garbling and soldering for this setting.

We implemented our solution and integrated it with the state-of-the-art
compiler framework Frigate [MGC+16]. Experimentally, we report of a 4-7x
improvement in total running time compared to [WMK17] for certain circuits.
For the multi-execution setting we also improve the performance of [RR16] by
up to 5× in total running time. We accomplish the above while at the same
time retaining the desirable preprocessing and reactive capabilities of LEGO.

We start our presentation with a more technical overview of the state of the
art in LEGO, including soldering techniques in Section 5.3. We then present
the technical overview of our approach and improvements in Section 5.4. We
present the overview of our DUPLO framework, including several implemen-
tation optimizations and the Frigate extensions in Section 5.6. We report on
performance in Section 5.7.

5.2 Preliminaries

Our DUPLO protocol is a protocol for 2PC that is secure in the presence
of malicious adversaries. We define security for 2PC using the framework
of Universal Composition (UC), due to Canetti [Can01]. This framework
is demanding, as it guarantees security when such protocols are executed
concurrently, in arbitrary environments like the Internet.

A detailed treatment of UC security is beyond the scope of this work. At
the high level, security is defined in the real-ideal paradigm. We imagine an
ideal interaction, in which parties give their inputs to a trusted third party who
computes the desired function f and announces the result. In this interaction,
the only thing a malicious party can do is select its input to f . In the real
interaction, honest parties interact following the prescribed protocol, while
malicious parties may arbitrarily deviate from the protocol. We say that the
protocol securely realizes f if the real world is “as secure as” the ideal world.
More formally, for every adversary attacking the real protocol, there is an
adversary (called “simulator”) “attacking” the ideal interaction achieving the
same effect.

We assume some familiarity with modern garbled circuit constructions,
in particular, the Free-XOR optimization of Kolesnikov & Schneider [KS08].
This is reviewed in Section 5.3. Free-XOR garbled circuits are secure under a
circular correlation-robust hash assumption [CKKZ12].
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5.3 Overview of the LEGO Paradigm
We now give more details about the mechanics of the LEGO paradigm. Here
we describe the MiniLEGO approach of [FJN+13]. We chose MiniLEGO as it
is the simplest LEGO protocol to present. At the same time, it contains and
conveys all relevant aspects of the paradigm.

Soldering via XOR-Homomorphic Commitments

The sender generates many individual garbled NAND gates. Each garbled
gate g is associated with wire labels L0

g, L
1
g for the left input wire, labels

R0
g, R

1
g for the right input wire, and labels O0

g , O
1
g for the output wire. Here

the superscript of each label indicates the truth value that it represents.
In MiniLEGO, all gates are garbled using the Free-XOR optimization of
Kolesnikov & Schneider [KS08]. Therefore, there is a global (secret) value ∆
so that L1

g = L0
g ⊕∆ and R1

g = R0
g ⊕∆ and O1

g = O0
g ⊕∆. More generally, a

wire label Kb
g can be written as Kb

g = K0
g ⊕ b ·∆. Importantly, the same ∆ is

used for all garbled gates.
The garbled gate consists of the garbled table itself (i.e., for a single NAND

gate, the garbled table consists of two ciphertexts when using the scheme
of [ZRE15]) along with XOR-homomorphic commitments to the “zero”
wire labels L0

g, R0
g, and O0

g . A global homomorphic commitment to ∆ is also
generated and shared among all gates.

To assemble assorted garbled gates into a circuit, the LEGO paradigm uses
a technique called soldering. Imagine two wires (attached to two unrelated
garbled gates) whose zero-keys are A0 and B0, respectively. The sender can
“solder” these wires together by decommiting to S = A0⊕B0. We require that
such a decommitment can be performed given separate commitments to A0

and B0, and that the decommitment reveals no more than S. Importantly, S
is enough information to allow the receiver to transfer a garbled truth value
from the first wire to the second (and vice-versa). For example, if the receiver
holds wire label Ab (for unknown b), he can compute

Ab ⊕ S = (A0 ⊕ b ·∆)⊕ S = B0 ⊕ b ·∆ = Bb,

which is the garbled encoding of the same truth value, but on the other wire.
Gates are assigned to buckets by the receiver, where each bucket, while

possibly containing malicious gates, will be assembled to correctly implement
the NAND gate. For the gates inside a bucket, the sender therefore solders
all their left wires together, all their right wires together, and all their output
wires together with the effect that the bucket can operate on a single set of
input labels and produce a single set of output labels. For β gates in a bucket,
this gives β ways to evaluate the first gate (use solder values to transfer its
garbled inputs to the ith bucket gate, evaluate it, then transfer the result back
to the first gate). In the most basic form of LEGO, the cut-and-choose ensures
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that the majority of gates within the bucket are good. Hence the evaluator
can evaluate the bucket in β ways and take the majority output wire label.
Each bucket therefore logically behaves like a correct garbled gate.

The buckets are then assembled into a complete garbled circuit by soldering
output wires of one bucket to the input wires of another.

Recent LEGO Improvements

In recent years several improvements to the LEGO approach has been proposed
in the literature. The TinyLEGO protocol [FJNT15] provide several concrete
optimizations to the above MiniLEGO protocol, most notably a more efficient
bucketing technique. The subsequent implementation [NST17] further opti-
mized the protocol and showed that, combined with the XOR-homomorphic
commitment scheme of [FJNT16, CDD+16], the LEGO paradigm is competi-
tive with previous state-of-the-art protocols for malicious 2PC, in particular in
scenarios where preprocessing is applicable.

In addition to the above works, the protocol of [ZH17] also explores optimiza-
tions of LEGO using a different soldering primitive, dubbed XOR-Homomorphic
Interactive Hash (XOR-HIH). This technique has a number of advantages over
commitments as they allow for a better probability than MiniLEGO and
TinyLEGO of catching cheating in the C&C phase. XOR-HIH also yields
buckets only requiring a single “correct” gate, whereas MiniLEGO requires a
majority and TinyLEGO requires a mixed majority of gates and wire authenti-
cator gadgets. However, due to the communication complexity of the proposed
XOR-HIH instantiation being larger than that of the [FJNT16, CDD+16] com-
mitment schemes, the overall communication complexity of [ZH17] is currently
larger than that of TinyLEGO.

5.4 Overview of Our Construction

DUPLO protocol big picture. At the high level, our idea is to extend
the LEGO paradigm to support components of arbitrary size and distinct
functionalities, rather than just a single kind of component that is either a
single gate or the entire circuit. The approach is similar in many ways to the
LEGO protocol and is broken up into three phases.

In the function-independent phase, the garbler generates many independent
garblings of each kind of component, along with related commitments required
for soldering. For each kind of component, the parties perform a cut-and-
choose over all garbled components. The receiver asks the garbler to open
some fraction of these components, which are checked for correctness. The
remaining components are assembled randomly into buckets. The soldering
required to connect components into a bucket is done at this step.
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In the function-dependent phase, the parties agree on circuits that can be
assembled from the available components. The parties perform soldering that
connects different buckets together, forming the desired circuits.

In the online phase, the parties have chosen their inputs for an evaluation
of one of the assembled circuits. They perform oblivious transfers for the
evaluator to receive its garbled input, and the garbler also releases its own
garbled inputs. The evaluator then evaluates the DUPLO garbled circuit and
receives the result.

Challenges and New Techniques. The seemingly simple high-level idea
described above encounters several significant technical challenges in its re-
alization. We address the issues in detail in Section 5.5. Here we mention
that the main challenge is that the LEGO paradigm uses the same Free-XOR
offset ∆ for all garbled components, and its soldering technique crucially relies
on this fact. This is not problematic when components are single gates, but
turns out to lead to scalability issues for larger components. As a result, we
must change the fundamental garbling procedure, and therefore change the
soldering approach.

The TinyLEGO approach uses an input recovery technique inspired by
[Lin13]. The idea is that if the garbler cheats in some components, then the
resulting garbled circuit will either give the correct garbled output, or else it
will leak the garbler’s entire input! In the latter case, the evaluator can simply
evaluate the function in the clear. As above, the TinyLEGO approach to this
input recovery technique relies subtly on the fact that the components are
small, and as a result it does not scale for large components. We introduce an
elegant new technique that works for components of any size, and improves
the concrete cost of the input recovery mechanism.

Implementation, Evaluation, Integration. We implemented a high-per-
formance prototype of our protocol to explore the effect of varying component
sizes in the C&C paradigm. We study a variety of scenarios and parame-
ter choices and find that our generalizations of C&C can lead to significant
performance improvement. Details are given in Section 4.6.

We have adapted the Frigate circuit compiler of Mood et al. [MGC+16],
which compiles a variant of C into circuits suitable for garbled circuit 2PC
applications. We modified Frigate so that subroutines are treated as DUPLO
components. As an example, a CBC-MAC algorithm that makes calls to an
AES subroutine will be compiled into an “outer circuit” built from atomic
AES components, as well as an “inner circuit” that implements the AES
component from boolean gates. In our implementation, the inner circuits
are then garbled as DUPLO components, and the outer circuits are used to
assemble the components into high-level functionalities.
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5.5 DUPLO Protocol Details

We now give more details about the challenges in generalizing the LEGO
paradigm, and our techniques to overcome them.

Different ∆’s

The most efficient garbling schemes use the Free-XOR optimization of [KS08].
MiniLEGO/TinyLEGO are compatible with Free-XOR, and in fact they enforce
that all garbled gates use the same global Free-XOR difference ∆. However,
having a common ∆ does lead to some drawbacks. In particular, consider the
part of the cut-and-choose step in which the receiver chooses some garbled
gates to be opened/checked. If we fully open a garbled gate, both wire labels
are revealed for each wire. In MiniLEGO, this would reveal ∆ and compromise
the security of the unopened gates, which share the same ∆. To avoid this,
the MiniLEGO approach is to make the sender reveal only one out of the
four possible input combinations to each opened gate (by homomorphically
decommitting to the input wire labels). Note that the receiver may now have
only a 1/4 probability of detecting an incorrectly garbled gate (the technique
of [ZH17] improves this probability to 1/2). The cut-and-choose analysis must
account for this probability.

This approach of only partially opening garbled gates does not scale well
for large components. If a component has n input wires, then the receiver will
detect bad components with probability 1/2n in the worst case. In the DUPLO
protocol, we garble each component c with a separate Free-XOR offset ∆c (so
each gate inside the garbled component uses ∆c, but other garbled components
use different offset). Hence, DUPLO components can be fully opened in the
cut-and-choose phase, while XOR gates are still free inside each component.

As a result:

• Bad components are detected with probability 1, so the statistical analysis
for DUPLO cut-and-choose is better than Mini/TinyLEGO by a constant
factor.

• We can use a variant of the optimization suggested in [GMS08] to save
bandwidth for cut-and-choose. Initially the sender only sends a short
hash of each garbled component. Then to open a component, the sender
decommits to the input and output keys as well as the ∆c used for garbling
the component. Hence, communication for the opened components is
minimal.

Adapting soldering. It remains to describe how to adapt the soldering
procedure to solder wires with different Free-XOR offsets (the MiniLEGO
approach relies on the offsets being the same). Here we adapt a technique
of [AHMR15] for soldering wires. Using the point-and-permute technique for
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garbled circuits [BMR90], the two wire labels for each wire have random and
opposite least-significant bits. We refer to this bit as the color bit for a wire
label. The evaluator sees the color bit of a wire, but not the truth value of a
wire.

In MiniLEGO, the garbler commits to the “zero-key” for each wire, which
is the wire label encoding truth value false. In DUPLO, we have the garbler
generate homomorphic commitments to the following:

• For each wire, commit to the wire label with color bit zero. In this section
we therefore use notation Kb to denote a wire label with color bit (not
necessarily truth value) b.

• For each wire, commit to an indicator bit σ for each wire that denotes
the color bit of the false wire label. Hence, wire label Kb has truth value
b⊕ σ.

• For each component c, commit to its Free-XOR offset ∆c.

Consider a wire i with labels (K0
i ,K

1
i = K0

i ⊕ ∆i) and indicator bit σi,
and another wire j in a different component with labels (K0

j ,K
1
j = K0

j ⊕∆j)
and indicator bit σj . To solder these wires together, the garbler will give
homomorphic decommitments to the following solder values:

sσ = σi ⊕ σj ; SK = K0
i ⊕K0

j ⊕ sσ ·∆j ; S∆ = ∆i ⊕∆j

Note that the decommitment to S∆ can be reused for all wires soldered between
these two components. Now when the evaluator learns wire label Kb

i (with
color bit b visible), he can compute:

Kb
i ⊕ SK ⊕ b · S∆ = Kb

i ⊕ (K0
i ⊕K0

j ⊕ sσ ·∆j)⊕ b · (∆i ⊕∆j)
= b ·∆i ⊕ (K0

j ⊕ sσ ·∆j)⊕ b ·∆i ⊕ b ·∆j

= K0
j ⊕ (sσ ⊕ b) ·∆j = Ksσ⊕b

j

Also note that a common truth value has opposite color bits on wires i & j if
and only if sσ = σi ⊕ σj = 1. Hence, the receiver obtains the wire label Ksσ⊕b

j

which encodes the same truth value as Kb
i .

DUPLO bucketing. In Section 5.3 we described how [FJN+13] used a
bucket size that guaranteed a majority of correct AND gates in each bucket.
In this work we use the original bucketing technique of [NO09] that only
requires a single correct component in each bucket, but requires a majority
bucket of wire authenticator (WA) gadgets on each output wire. The purpose
of a WA is to accept or reject a wire label as “valid” without revealing
the semantic value on the wire, and as such a simple construction can be
based on a hash function and C&C. A WA consists of a “soldering point”
(homomorphic commitments to a ∆ and a zero-key), along with an unordered
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pair
{
H(K0

i ),H(K0
i ⊕∆)

}
. A wire label K can be authenticated checking

for membership H(K) ∈
{
H(K0

i ),H(K0
i ⊕∆)

}
. In order to defeat cheating

a C&C step is carried out on the WAs to ensure that a majority of any WA
bucket only accepts committed wire labels. The choice of using WAs in this
work is motivated by the fact that DUPLO components can be of arbitrary
size and are often much larger than a single gate. By requiring fewer such
components in total, we therefore achieve much better overall performance as
WAs are significantly cheaper to produce in comparison to garbled components.

Avoiding commitments to single bits. We also point out that the sepa-
rate commitments to the zero-labelK0

i and the indicator bit σi can be combined
into a single commitment. The main idea is that the least significant bit of K0

i

is always zero (being the wire label with color bit zero). Similarly, when using
Free-XOR, the offset ∆ must always have least significant bit 1. Hence in the
solder values S and S∆, the evaluator knows a priori what the least significant
bit will be. We can instead use the least significant bits of the K0

i commitments
to store the indicator bit σi so that homomorphic openings convey σi ⊕ σj .
This approach saves s bits of communication per wire commitment over the
naive approach of instantiating the bit-commitments using [FJNT16] using a
bit-repetition code with length s.

In the online evaluation phase, the garbler decommits to the indicator bits
of the evaluators designated input and output. In this case, the garbler does
not want to decommit the entire wire label as this would potentially let the
evaluator learn the global difference ∆ (if the evaluator learned the opposite
label through the OTs or evaluation). To avoid this, we have the garbler
generate many commitments to values of the special form R‖0 for random
R ∈ {0, 1}κ−1. Using the homomorphic properties of these commitments,
this can be done efficiently by having the garbler decommit s random linear
combinations of these commitments to ensure that all of them have the desired
form with probability 1− 2−s. Then when the garbler wants to decommit to a
wire label’s indicator bit only, it gives a homomorphic decommitment to the
wire label XOR a mask R‖0, which hides everything but the indicator bit.

Improved Techniques for Circuit Inputs

We also present a new, more efficient technique for input recovery. The idea
of input recovery [Lin13] is that if the sender in a 2PC protocol cheats, the
receiver will learn the sender’s input (and can hence compute the function
output).

Within each DUPLO bucket, the cut-and-choose guarantees at least one
correctly garbled component and a majority of correct output-wire authentica-
tors. As such, the evaluator is guaranteed to learn, for each output wire of a
component, either 1 or 2 valid garbled outputs. If only one garbled output is
obtained, then it is guaranteed to be the correct one. Otherwise, the receiver
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learns both wire labels and hence the Free-XOR offset ∆c for that component.
The receiver can then use the solder values to iteratively learn both wire labels
on all wires in the circuit (at least all the wires in the connected component in
which the sender cheated).

However, knowing both wire labels does not necessarily guarantee that the
receiver learns their corresponding truth values. We need a mechanism so that
the receiver learns the truth value for the sender’s garbled inputs.

Our approach is to consider special input-components. These consist of
an empty garbled circuit but homomorphic commitments to a zero-wire-label
K and a Free-XOR offset ∆ that serve as soldering points. Suppose for every
input to the circuit, we use such an input component that is soldered to other
components. The sender gives his initial garbled input by homomorphically
decommitting to either the zero wire-label K or K ⊕∆. If the sender cheats
within the computation, the receiver will learn ∆. The key novelty in our
approach is to use self-authenticating wire labels. In an input-gadget, the
false wire label must be H(∆) and the true wire label must be H(∆)⊕∆ (the
sender will still commit to whichever has color bit zero). Then when the sender
cheats, the receiver learns ∆, and can determine whether the sender initially
opened H(∆) (false) or H(∆)⊕∆ (true).

This special form of wire labels can be checked in the cut-and-choose for
input components. In the final circuit, we assemble input-components into
buckets to guarantee that a majority within each bucket is correct. Then the
receiver can extract a cheating sender’s input according to the majority of
input-components in a bucket.

Formal Description, Security

Our protocol implements secure reactive two-party computation [NR16], i.e.,
the computation has several rounds of secret inputs and secret outputs, and
future inputs and as well as the specification of future computations might
depend on previous outputs.

To be more precise, let F denote the ideal functionality FL,Φ
R2PC in Fig. 9 on

page 1040 in [NR16]. Recall that this functionality allows to specify a reactive
computation by dynamically specifying the functionality of sub-circuits and
how they are linked together. The command (Func, t, f) specifies that the
sub-circuit identified by t has circuit f . The command (Input, t, i, x) gives
input x to wire i on sub-circuit t. Only one party supplies x, the other party
inputs (Input, t, i, ?) to instruct F that the other party is allowed to give an
input to the specified wire. The command defines the wire to have value x.
The command (Link, t1, i1, t2, i2) specifies that output wire i1 of sub-circuit t1
should be soldered on input wire i2 of sub-circuit t2. When an output value
becomes defined to some x, this in turn defines the linked input wire to also
have value x. The command (Garble, t, f) evaluates the sub-circuit t. It
assumes that all the input wires have already been defined. It runs f on these
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values and defines the output wires to the outputs of f . There are also output
commands that allow to output the value of a wire to a given party. They may
be called only on wires that had their value defined.

The set L allows to restrict the set of legal sequences of calls to the
functionality. We need the restriction that all (Func, t, f) commands are given
before any other command. This allows us to compute how many times each
f is used and do our preprocessing. The function Φ allows to specify how
much information about the inputs and outputs of F is allowed to leak to the
adversary. We need the standard setting that we leak the entire sequence of
inputs and outputs to the adversary, except that when an honest party has
input (Input, t, i, x), then we only leak (Input, t, i, ?) and when an honest
party has output (Output, t, i, y), then we only leak (Output, t, i, ?).

With many components, many buckets, and many 2PC executions, the
formal description of our protocol is rather involved. It is therefore deferred to
Section 5.8 while we in Section 5.9 prove the following theorem.

Theorem 4. Our protocol implements F in the UC framework against a
static, poly-time adversary.

5.6 System Framework
In this section we give an overview of the DUPLO framework and our extension
to the Frigate compiler that allows to transform a high-level C-style program
into a set of boolean circuit components that can be fed to the DUPLO
system for secure computation. We base our protocol on the recent TinyLEGO
protocol [FJNT15], but adapted for supporting larger and distinct components.
Our protocol has the the following high-level interface:

Setup A one-time setup phase that initializes the XOR-homomorphic com-
mitment protocol.

PreprocessComponent(n, f) produces n garbled representations Fj of f that
can be securely evaluated.

PrepareComponents(i) produces i input authenticators that can be used to
securely transfer input keys from garbler G to evaluator E. In addition,
for all Fj previously constructed using PreprocessComponent, this call
constructs and attaches all required output authenticators. These gadgets
ensure that only a single valid key will flow on each wire of all garbled
components (otherwise the evaluator learns the generator’s private input).

Build(C) Takes a program C as input, represented as a DAG where nodes
consist of the input/output wires of a set of (possibly distinct) components
{fi} and edges consist of links from output wires to input wires for all
of these fi’s. The Build call then looks up all previously constructed
Fj for each fi and stitches these together using the XOR-homomorphic
commitments so that they together securely compute the computation
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specified by C. This call also precomputes the required oblivious transfers
(OTs) for transferring E’s input securely.

Evaluate(x, y) Given the plaintext input x of garbler G and y of evaluator
E, the parties can now compute a garbled output Z, representing the
output of the f(x, y). The system allows both parties to learn the full
output, but also distinct output, e.g. G can learn the first half of f(x, y)
and E learn the second half.

Decode Finally the system allows the parties to decode their designated
output. The reason why we have a dedicated decode procedure is to
allow partial output decoding. Based on the decoded values the parties
can then start a new secure computation on the remaining non-decoded
output, potentially adding fresh input as well. The input provided
and the new functionality to compute can thus depend on the partially
decoded output. This essentially allows branching within the secure
computation.

Following the terminology introduced in [NST17] we have that the Setup,
PreprocessComponent, and PrepareComponents calls can be done independently
of the final functionality C. These procedures can therefore be used for
function-independent preprocessing by restricting the functionality C to be
expressible from a predetermined set of instructions. The Build procedure
clearly depends on C, but not on the inputs of the final computation, so this
phase can implement function-dependent preprocessing. Finally the Evaluate
and Decode procedures implement the online phase of the system and depend
on the previous two phases to run.

For a detailed pseudocode description of the system as well as a proof of
its security we refer the reader to Section 5.8 and Section 5.9, respectively.

Implementation optimizations

As part of our work we developed a prototype implementation in C++ using
the latest advances in secure computation engineering.1 As the basis for our
protocol we start from the libOTe library for efficient oblivious transfer exten-
sion [Rin]. As we in this work require UC XOR-homomorphic commitments to
the input and output wires of all components we instantiate our protocol with
the efficient construction of [FJNT16] and use the implementation of [RT17]
in our prototype.

As already mentioned, our protocol is described in detail in Section 5.8.
However, for reasons related to efficiency our actual software implementation
deviates from the high-level description in several aspects

• In the homomorphic commitment scheme of [FJNT16], commitments
to random values (chosen by the protocol itself) are cheaper than com-

1Available at https://github.com/AarhusCrypto/DUPLO
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mitments to values chosen by the sender. Hence, whenever applicable
we let the committed key-values be defined in this way. This optimiza-
tion saves a significant amount of communication since the majority of
commitments are to random values.

• Along the same lines we heavily utilize the batch-opening mechanism
described in [FJNT16]. The optimization allows a sender to decommit
to n values with total bandwidth nκ + O(s) as opposed to the naive
approach which requires O(nκs).

• In the PrepareComponents step we construct all output-wire key authen-
ticators using a single global difference ∆ka. This saves a factor 2x in
terms of the required number of commitments and solderings, at the cost
of an incorrect authenticator only getting caught with probability 1/2 (as
opposed to prob. 1 using distinct differences). However as the number
of required key authenticators depends on the total number of output
wires of all garbled components the effect of this difference in catching
probability does not affect performance significantly when considerings
many components.

In addition to the above optimizations, our implementation takes full
advantage of modern processors’ multi-core capabilities and instruction sets.
We also highlight that our code leaves a substantially lighter memory footprint
than the implementation of [NST17] which stores all garbled circuits and
commitments in RAM. In addition to bringing down the required number of
commitments on the protocol level, our implementation also makes use of disk
storage in-between batches of preprocessed component types. This has the
downside of requiring disk reads of the garbled components during the online
phase, but we advocate that the added flexibility and possibility of streaming
preprocessing is well worth this trade-off in performance.

Frigate Extension

The introduction of Fairplay [MNPS04], the first compiler targeted for se-
cure computation (SC), has stimulated significant interest from the research
community. Since then, a series of new compilers with enhanced perfor-
mance and functionality have been proposed, such as CBMC [HFKV12], Obliv-
C [ZE15], and ObliVM [LWN+15]. Importantly, the state-of-the-art compiler,
Frigate [MGC+16], features a modular and extensible design that simplifies the
circuit generation in secure computation. Relying on its rich language features,
we provide an extension to the original Frigate framework, in which we divide
the specific input program into distinct functions. We can then generate a
circuit representation for each function which is fully independent from the
circuit representation of other functions. Due to this independence we can
easily garble each distinct function separately using the DUPLO framework
and afterwards solder these back together such that they compute the original
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source program. As an additional improvement, which is tangential to the
main thrust of this work, we construct an AES module that optimizes the
number of uneven gates (all even gates can be garbled and evaluated without
communication using e.g. [ZRE15]).

In the following, we describe the details of our compiler extension. Similar to
the Frigate output format, our circuit output contains a set of input and output
calls, gate operations, and function calls. The input and output calls consist
of wires, which we enumerate and manage. We also use wires to represent
declared variables in the source program. Each wire (or, rather its numeric id)
is placed in a pool, and is ready for use whenever a new variable is introduced.
Our function representation however differs from that of Frigate. In that work,
each function reserves a specific set of wire values which requires no overlap
among the functions’ wires. As a result, Frigate’s function representation is
dependent on that of other functions. We remove this dependency by creating
and managing separate wire pools for each function. In particular, every time
a variable is introduced, our compiler searches for the free wires with the
smallest indices in the pool of the current working function. Similarly to the
original Frigate, our compiler will free the wires it can after each operation or
variable assignment. Hence, our function is represented independently of other
functions.

We now describe our strategy for constructing our optimized AES circuit.
A key component of AES is the Rijndael S-Box [DR02] which is a fixed non-
linear substitution table used in the byte substitution transformation and
the key expansion routine. The circuit optimization in our AES-128 source
program is described in the context of this S-Box. We note that if we generate
the S-Box dynamically using the Frigate compiler, this will not optimize the
number of uneven gates substantially. Hence, we create an AES-128 source
program that embed a highly optimized S-Box circuit statically. To the best
of our knowledge, [BP09] presents one of the most efficient S-Box circuit
representation which contains only 32 uneven gates in a total of 115 gates.
Therefore, we integrate this S-Box into our AES-128 source program, which
allows our Frigate extension to optimize the number of uneven gates. For the
key-expanded AES-128 circuit, which takes a 128-bit plaintext and ten 128-bit
round keys as input and outputs a 128-bit ciphertext, this results in 5,120
uneven gates. This is almost a 2x reduction compared the AES-128 circuit
originally reported in Frigate. Furthermore, our AES-128 circuit has 640 fewer
uneven gates than the circuit reported in TinyGarble [SHS+15] which is the
current best compiler written in Verilog. For completeness we note that for
the non-expanded version of AES-128, our compiled circuit results in 6,400
uneven gates.
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5.7 Performance
In order to evaluate the performance of our prototype we run a number of
experiments on a single server with simulated network bandwidth and latency.
The server has two 36-core Intel(R) Xeon(R) E5-2699 v3 2.30 GHz CPUs and
256 GB of RAM. That is, 36 cores and 128 GB of RAM per party. As both
parties are run on the same host machine we simulate a LAN and WAN
connection using the Linux tc command: a LAN setting with 0.02 ms round-
trip latency, 1 Gbps network bandwidth; a WAN setting with 96 ms round-trip
latency, 200 Mbps network bandwidth.

For both settings, the code was compiled using GCC-5.4. Throughout this
section, we performed experiments with a statistical security parameter s = 40
and computational security parameter κ = 128. The running times recorded
are an average over 10 trials.

We demonstrate the scalability of our implementation by evaluating the
following circuits:

AES-128 circuit consisting of 6,400 AND gates. The circuit takes a 128-bit
key from one party and a 128-bit block from another party and outputs
the 128-bit ciphertext to both. (Note that this functionality is somewhat
artificial for secure computation as the AES function allows decryption
with the same key; thus the player holding the AES key can obtain
the plaintext block. We chose to include the ciphertext output to the
keyholder to measure and demonstrate the performance for the case
where both parties receive output.)

CBC-MAC circuit with different number of blocks m ∈ {16, 32, 64,128,256,
1024} using AES-128 as the block cipher. The circuit therefore consists
of 6, 400m AND gates. The circuit takes a 128-bit key from one party
and m 128-bit blocks from another party and outputs a 128-bit block to
both.

Mat-Mul circuit consisting of around 4.2 million AND gates. The circuit
takes one 16× 16 matrix of 32-bit integers from each party as input and
outputs the 16× 16 matrix product to both.

Random circuit consisting of 2n AND gates for various n where topology of
the circuit is chosen at random. The circuit takes 128-bit input from
each party and outputs a 128-bit value to both.

Effect of Decomposition

In this section we show how DUPLO scales for the above-mentioned circuits,
when considering subcomponents of varying size. As discussed in Section 5.1,
we expect the performance of our protocol to be optimal for a subcomponent
size somewhere inbetween the extremes of whole-circuit and gate-level C&C.
We empirically validate this hypothesis by running two kinds of experiments,
one for the randomly generated circuits and one for the real-world AES-128,
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CBC-MAC-16 and Mat-Mul circuits. The purpose of the random circuit
experiment is to explore the trade-offs in overall performance between different
decomposition strategies. For the latter experiment we aim to find their
optimal decomposition strategy, both to see how this aligns to the random
circuit experiment, but also for use in our later performance comparison in
Section 5.7.

Random Circuits. In order to build a random circuit consisting of 2n AND
gates that is easily divisible into different subcomponent sizes we initially
generate a number of smaller random circuit containing 2t AND gates with
256 input wires and 128 output wires. This is done by randomly generating
non-connected XOR and AND until exactly 2t AND gates have been generated.
Then for each of these generated gates i we assign their two input wires at
random from the set of gates with index smaller than i (the gate id i is also
the gate’s output wire). Finally we solder 2n−t copies of these components
together into a final circuit C, thus consisting of 2n AND gates overall. We
consider n ∈ {10, 12, 14, 16, 18, 19, 20} in this experiment, and for each of these
we build a circuit of size 2n using several values of t.

As we are only considering relative performance between different strategies
in these experiments we run our implementation using a single thread for each
party on the previously mentioned LAN setup.2 We summarize our findings
in Figure 5.1. The x-axis of the figure represents the continuum from whole-
circuit C&C (t = n) towards gate-level C&C (t = 0). The overall trend of
our experiments is strikingly clear, initially as the number of subcomponents
increases (t decreases) the running time goes down as well due to our protocol
taking advantage of the amortization benefits offered by the LEGO paradigm.
However for all circuit sizes considered it is also apparent that at some point
this benefit is outweighed by the overhead of soldering and committing to
the increasing number of input/output wires between the components. It is
at exactly this point (the vertex of each graph), in the sweet spot between
substantial LEGO amortization and low soldering overhead, that DUPLO has
it’s optimal performance. We thus conclude that for an ideally decomposable
circuit such as the ones generated in this experiment the viability of the
DUPLO approach is apparent.

Real-world circuits. The experiments for the random circuits show that
the DUPLO approach for C&C does have merit for circuits that can be divided
into multiple identical subcomponents. Clearly, this is a very narrow class
of functions so in addition we also evaluate our prototype on the previously
mentioned real-world circuits in order to investigate their optimal decompo-

2For best absolute performance, we would always run our implementation using several
threads per party.
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Figure 5.1: DUPLO performance for random circuits consisting of 2n AND
gates divided into 2n−t subcomponents.

sition strategy. We first describe our approach of dividing these circuits into
subcomponents.

AES-128 We consider the following three strategies:
• Five kinds of subcomponents: each computing one of the functions

of the AES algorithm, that is 1x Key Expansions (1,280 AND gates),
11x AddRoundKey, 10x SubBytes (512 AND gates), 10x ShiftRows,
and 9x MixColumns.

• Three kinds of subcomponents: 1x Key Expansions and Initial
Round (1,280 AND gates); 9x AES Round Functions (each 512
AND gates); 1x AES Final Round (512 AND gates).

• A single component consisting of the entire AES-128 circuit (6,400
AND gates), i.e. whole-circuit C&C.

CBC-MAC-16 We consider decomposing this circuit into a single subcom-
ponent of varying size. In each case, the component contains i ∈
{16, 8, 4, 2, 1} AES-128 blocks, meaning each of these consists of 6, 400i
AND gates.

Mat-Mul In order to multiply two matrices A,B use the block-matrix al-
gorithm: We divide A,B into m ×m 32-bit submatrices Ai,j , Bi,j for
i, j ∈ [1, 16/m]. To compute AB, the block entries Ai,k are first multi-
plied by the block entries Bk,j for k ∈ [1,m], while summing the results
over k. It is therefore the case that the experiment contains two dif-
ferent kinds of components, m ×m 32-bit matrix product and m ×m
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Figure 5.2: DUPLO performance for N = 1, 32, 128 parallel executions of the
CBC-MAC-16 circuit using different decomposition strategies.

32-bit matrix addition. In our experiment we consider block matrix sizes
m ∈ {16, 8, 4, 2} and the concrete number of AND gates for each kind of
component are reported in Table 5.1.

When performing N = 1, 32, 128 executions of AES-128 in parallel, we
observe that our protocol performs best when considering the entire circuit as a
single component. This is in contrast to what we observed in the random circuit
experiment, but can be explained by the non-uniformity of the considered
decomposition strategies. The fact that we split the AES-128 into three or
five relatively small subcomponents, some of which are only used once, has
a very negative influence on DUPLO performance as there is some overhead
associated with preparing each component type while at the same time no
LEGO-style amortization can be exploited when preparing only a single copy.

For the CBC-MAC-16 circuit however whole-circuit C&C is not the optimal
approach and we summarize the observed performance for the different decom-
positions in Figure 5.2. Here we see that the best strategy is to decompose the
circuit into many identical subcomponents. The trend observed is similar to
the random circuit experiments where initially it is best to optimize for many
identical subcomponents. In particular for a single execution of CBC-MAC-16
it is best to decompose into 16 copies of the AES-128 circuit yielding around
5x performance increase over the whole-circuit approach. For the parallel
executions (which contain overall many more AES-128 circuits) we can see
that it is best to consider subcomponents consisting of 4xAES-128 circuits
each. The lower relative performance difference between the strategies for the
parallel executions is due to there being a minimum of N circuits for utilizing
LEGO amortization, even for the whole-circuit approach. However as the
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Figure 5.3: DUPLO performance for N = 1, 32, 128 parallel executions of the
Mat-Mul circuit using different decomposition strategies.

number of total subcomponents grow it can be seen that there are savings to
be had by grouping executions together.

Block Component Size Number Executions N
Size Mult Add 1 32 128
2x2 8,192 124 11,160 7,815 7,554
4x4 65,536 496 14,847 7,539 6,622
8x8 524,288 1,984 52,334 9,615 7,324

16x16 4,194,304 0 351,002 11,338 9298

Table 5.1: Component sizes and amortized running time per execution for
Mat-Mul (ms). Best performance marked in bold.

Finally for the Mat-Mul circuit we see a similar overall trend as in the
CBC-MAC-16 experiment (Figure 5.3 and Table 5.1). Most notably is the
performance increase for a single execution yielding around 31x by considering
blocks of size 2× 2 instead of a single whole-circuit 16× 16. This experiment
indeed highlights the performance potential of the DUPLO approach for
large computations that can naturally be decomposed into distinct repeating
subcomponents, in this case matrix product and matrix addition. This is in
contrast to the previous AES-128 example where this approach was penalized.
The difference however is that in the Mat-Mul experiment each subcomponent
is repeated several times and therefore all benefit from LEGO amortization.

Experiment Discussion. The above real-world examples show that the
DUPLO approach has merit, but the exact performance gains depend signifi-
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cantly on the circuit in question. As a general rule of thumb DUPLO performs
best when the circuit can be decomposed into many identical subcomponents
as can be seen from the CBC-MAC-16 and Mat-Mul experiments (the more
the better). As there is no immediate way of decomposing the AES-128 circuit
in this way, we see that performance suffers when the circuit cannot be decom-
posed into distinct repeating parts. However the Mat-Mul experiments show
that decomposing the circuit into distinct circuits can certainly have merit,
however it is crucial that each subcomponent is repeated a minimal number of
times or the non-repeating part of the computation is relatively small.3

Comparison with Related Work

We also compared our prototype to three related high-performance open-
source implementations of malicious-secure 2PC. All experiments use the
same hardware configuration described at the beginning of this section. For all
experiments we have tried tuning the calling parameters of each implementation
to obtain the best performance.

When reporting performance of our DUPLO protocol, we split the offline
part of the computation into an independent preprocessing (Setup + Pre-
processComponent + PrepareComponents) whenever our analysis shows that
dividing the computation into subcomponents is optimal — i.e., when evaluat-
ing AES-128 we do not have any function-independent preprocessing since the
optimal configuration is to let the component consist of the entire circuit. We
summarize our measured timings for all the different protocols in Table 5.2,
and now go into more detail:

Better Amortization by Subdivision. The protocol of Rindal & Rosulek
(RR in our tables) [RR16] is currently the fastest malicious-secure 2PC protocol
in the multi-execution setting. The protocol of Nielsen et al. (NST) [NST17] is
the fastest that allow for function-independent preprocessing, using the LEGO
paradigm.4

The general trend in Table 5.2 is that as the total complexity (combined
cost of all computations) grows, the efficiency of the DUPLO approach becomes
more and more apparent. For example, DUPLO is 1.5x times faster (counting
total offline+online time) than RR whole-circuit C&C for 1024 AES-128 LAN.
For the larger CBC-MAC-16 scenario, the difference 2.5x. For the even larger
case of 32 Mat-Mul executions, the difference is 5x. Our experiments clearly
confirm that DUPLO scales significantly better than state-of-the-art amortizing
protocols.

3This is not the case for the AES-128 circuit as the non-repeating part consists of around
40% of the entire computation.

4The recent 2PC protocol of [KRW17b] appears to surpass NST in terms of performance
in this setting, but as this implementation is not publicly available at the time of writing we
do not consider it for these experiments.
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5. DUPLO: Unifying Cut-and-Choose for Garbled Circuits

When comparing to the LEGO C&C protocol of NST things are harder
to compare as they use a much slower BaseOT implementation than we do
(1200 ms vs. 200 ms) which especially matters for lower complexity computa-
tions. However even when accounting for this difference, in total time, our
approach has 2-3x better total performance for AES-128. We note that if
Ind. Prep. is applicable for an application then DUPLO cannot compete with
NST for small computations, but as demonstrated from our CBC-MAC-16
experiments, once the computation reaches a certain size and we can decom-
pose the target circuit into smaller subcomponents, DUPLO overtakes NST in
performance by a factor 5x.

It is interesting to note that the online time of NST is vastly superior to RR
and DUPLO, especially for small circuits (2-4x). This is due to the difference
between whole-circuit C&C and gate-level C&C where the NST bucket size is
relatively small (and thus online computation) even for a single circuit, whereas
it needs to be 5-10x larger for the whole-circuit approach. As the number of
executions increase we however see that this gap decreases significantly. We
believe the reason why NST still outperforms DUPLO in all online running
times is that the NST implementation is RAM only, whereas DUPLO writes
components and solderings to disk in the offline phases and reads them in the
online phase as needed. For RR we notice some anomalies for their online
times that we cannot fully explain. We conclude that the throughput measured
and reported in our experiments might not be completely fair towards the RR
protocol, but might be explained by implementation decisions that work poorly
for our particular scenarios. In any case, we do expect DUPLO to perform as
fast or faster than RR in the online phase due to less online rounds and data
transfer.

Amortized-grade Performance for Single-Execution. The current fas-
test protocol for single-execution 2PC is due to Wang et al. (WMK) [WMK17].
When comparing to their protocol, we ran all experiments using the “everything
online” version of their code since this typically gives the best overall running
time. We stress however that the protocol also supports a function-dependent
preprocessing phase, but since this is not the primary goal of that work we
omit it here.

Unsurprisingly, the protocols designed for the multi-execution settings
(including DUPLO) are significantly faster than WMK when considering several
executions. However, even in the single-execution setting, we see that DUPLO
scales better and eventually catches up to the performance of WMK for large
computations. WMK is 3x faster than DUPLO when the subcomponent is
an entire AES-128 circuit. Then, already for CBC-MAC-16 the ability to
decompose this into 16 independent AES-128 circuits yields around 1.4x factor
improvement over WMK. We further explore this comparison in Table 5.3,
by evaluating even larger circuits in the single-execution setting. For larger
CBC-MAC circuits, DUPLO is around 4.7x faster on LAN and 7.4x on WAN.
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5. DUPLO: Unifying Cut-and-Choose for Garbled Circuits

Protocol #Execs Ind. Prep Dep. Prep Online

WMK 1 7 7 9.66 MB

RR
32 7 3.75 MB 25.76 kB
128 7 2.5 MB 21.31 kB
1024 7 1.56 MB 16.95 kB

NST

1 14.94 MB 226.86 kB 16.13 kB
32 8.74 MB 226.86 kB 16.13 kB
128 7.22 MB 226.86 kB 16.13 kB
1024 6.42 MB 226.86 kB 16.13 kB

WRK

1 2.86 MB 570 kB 4.86 kB
32 2.64 MB 570 kB 4.86 kB
128 2.0 MB 570 kB 4.86 kB
1024 2.0 MB 570 kB 4.86 kB

DUPLO

1 7 12.94 MB 19.36 kB
32 7 2.60 MB 18.97 kB
128 7 1.96 MB 18.96 kB
1024 7 1.59 MB 18.96 kB

Table 5.4: Comparison of the data sent from constructor to evaluator AES-128
with κ = 128 and s = 40. All numbers are per AES-128. Best results marked
in bold.

Bandwidth Comparison

As a final comparison we also consider the bandwidth requirements of the
different protocols. In addition to the previous three protocols we here also
include the recent work of Wang et al. (WRK) [KRW17b]. To directly
compare we report on the data required to transfer from constructor to receiver
in Table 5.4 for different number of AES-128 executions. We stress that these
numbers are all from the same AES-128 circuit [ST] and not from our optimized
Frigate version. As already established for AES-128, DUPLO performs best by
treating the entire circuit as a single component, hence we do not distinguish
between Ind. Prep and Dep. Prep in the table. However we do stress that
DUPLO only requires solderings from the input-wires to the output-wires of
potentially large components, so for applicable settings we expect the Dep.
Prep of DUPLO to be much lower than that of NST and WRK as they
require solderings for each gate. It can be seen that for a single AES-128
component DUPLO cannot compare with the protocol of WRK in terms of
overall bandwidth. This is natural as the replication factor is much lower for
gate-level C&C in this case. However as the number of circuits grows we see
that DUPLO’s bandwidth requirement decreases significantly per AES-128 to a
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5.8. Protocol Details

point where it is actually better than WRK by a factor 1.6x at 1024 executions.
For the online phase it is clear that WRK’s bandwidth is better than our
protocol as we require decommitting the garbled input keys for the evaluator
which induces some overhead. However we note that our implementation is
not optimal in terms of online bandwidth in that we have chosen flexibility
over minimizing rounds and bandwidth. For a dedicated application DUPLO’s
online bandwidth can be reduced by around 2x by combining the evaluate and
decode phases and running batch-decommit of the evaluator input wires along
with the output indicator bits.

5.8 Protocol Details

We describe and analyse the protocol in the UC framework. We will here give
an abstract description that lends itself to a security analysis. In Section 5.6 we
describe some of the optimisations that were done in the implementation and
why they do not affect the security analysis. We describe the protocol for two
parties, the garbler G and the evaluator E. We will describe the protocol in the
hybrid model with ideal functionalities FHCOM and FOT for xor-homomorphic
commitment and one-out-of-two oblivious transfer. The precise description of
the ideal functionalities are standard by now and can be found in [FJNT16]
and [KOS15]. Here we will denote the use of the functionalities by some
pseudo-code conventions. When using FHCOM it is G that is the committer and
E that is the receiver. When G executes Commit(cid, x) for cid ∈ {0, 1}∗ and
x ∈ {0, 1}κ, then FHCOM stores (cid, xcid) (where xcid = x) and outputs cid
to E. When G executes Open(cid1, . . . , cidc), where each cidi was output to
E at some point, then FHCOM outputs (cid1, . . . , cidc,⊕ci=1xcidi) to E. When
G executes an open command, then the commitment identifies (cid1, . . . , cidc)
are always already known by E. If FHCOM outputs(cid′1, . . . , cid′c,⊕ci=1xcidi)
where some cid′i 6= cidi then E always tacitly aborts the protocol. Similarly
the cid used in the commit command is always known and E aborts if G
uses a wrong one. When using FOT it is G that is the sender and E that is
the receiver. We assume that we have access to a special OT which has a
special internal state ∆ ∈ {0, 1}κ, which is chosen by G once and for all at
the initialisation of the ideal functionality by executing OTinit(∆). After
that, when G executes OTsend(id, x0) for id ∈ {0, 1}∗ and x0 ∈ {0, 1}κ
and E executes OTreceive(id, b) for b ∈ {0, 1}, then FOT outputs (id, xb)
to E, where x1 = x0 ⊕ ∆. If the protocol specifies that G is to execute
OTreceive(id, b) and it does not or uses a wrong id, then E will always
detect this and will tacitly abort.

When we instruct a party to send a value, we tacitly assume the receiver
stores it under the same name when it is received.

When we instruct a party to check a condition, we mean that the party
will abort if the condition is false.
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5. DUPLO: Unifying Cut-and-Choose for Garbled Circuits

When a variable like Kid is created in our pseudo-code, it can be accessed
by another routine at the same party using the same identifier. Sometimes
we use the store and retrieve key-words to explicitly do this. To save on
notation, it will sometimes be done more implicitly, when it cannot lead to
ambiguity. In general, if an uninitialised variable like Kid is used in a protocol,
then there is an implicit "retrieve Kid" in the line before.

We assume that we have a free-xor garbling scheme (Gb,Ev) which has
correctness, obliviousness and authenticity. We recall these notions now. The
key length is some κ. The input to Gb is a poly-sized circuit C computing
a function C : {0, 1}n → {0, 1}m along with (K0

1 , . . . ,K
0
n,∆) ∈ ({0, 1}κ)n+1,

where lsb(∆) = 1. The output is (L0
1, . . . , L

0
m) ∈ ({0, 1}κ)m and a garbled

circuit F . Here F is the garbled version of C. Define K1
i = K0

i ⊕ ∆. For
x ∈ {0, 1}n define Kx = (Kx1

1 , . . . ,Kxn
n ). This is the garbled input, i.e.,

the garbled version of x. Define L1
i = L0

i ⊕ ∆. For y ∈ {0, 1}m define
Ly = (Ly1

1 , . . . , L
ym
m ). This is the garbled output. The input to Ev is a garbled

circuit F and a garbled input (K1, . . . ,Kn) ∈ ({0, 1}κ)n. The output is ⊥ or a
garbled output (L1, . . . , Lm) ∈ ({0, 1}κ)m. The scheme being free-xor means
the inputs and outputs are of the above form. Correctness says that if you
do garbled evaluation, you get the correct output. Obliviousness says that if
you are given F but not given (K0

1 , . . . ,K
0
n,∆), then the garbled input leaks

no information on the plaintext input (or output). Authenticity says that if
you are given only a garbled circuit for C and a garbled input for x, then you
cannot compute the garbled output for any other value than the correct value
C(x). These notions have been formalized in [BHR12b]. Here we recall them
in the detail we need here and specialized to free-xor garbling schemes.

correctness ∀x ∈ {0, 1}n and ∀(K0
1 , . . . ,K

0
n,∆) ∈ ({0, 1}κ)n+1 with lsb(∆) =

1 it holds for (L0
1, . . . , L

0
m, F ) = Gb(K0

1 , . . . ,K
0
n,∆) that Ev(F,Kx) =

LC(x).
obliviousness For uniformly random (K0

1 , . . . ,K
0
n,∆) ∈ ({0, 1}κ)n+1 with

lsb(∆) = 1 and (·, F ) ← Gb(K0
1 , . . . ,K

0
n,∆) and any x0, x1 ∈ {0, 1}n it

holds that (F,Kx0) and (F,Kx1) are computationally indistinguishable.
authenticity Let A be a probabilistic poly-time interactive Turing machine.

Run A to get a circuit C : {0, 1}n → {0, 1}m and an input x ∈ {0, 1}n.
Sample uniformly random (K0

1 , . . . ,K
0
n,∆) ∈ ({0, 1}κ)n+1 with lsb(∆) =

1 and ((L0
1, . . . , L

0
m), F ) ← Gb(K0

1 , . . . ,K
0
n,∆) and input (F,Kx) to A.

Let y = C(x). Run A to get (L1, . . . , Ln) ∈ ({0, 1}κ)m and y′ ∈ {0, 1}m.
If y′ 6= y and L = Ly

′ , then A wins. Otherwise A loses. We require that
the probability that any PPT A wins is negligible.

We will in fact require extended versions of these notions as we use a reactive
garbling scheme in the sense of [NR16]. In a reactive garbling scheme one can
make several independent garblings and then later solder an output wire id
with keys (K0

id,K
1
id) onto an input wire id′ with keys (K0

id′ ,K
1
id′) in another
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circuit. This involves releasing some information to the evaluator which allows
the evaluator later to compute Kb

id′ from Kb
id for either b = 0 or b = 1. The

notion of reactive garbling scheme is given in [NR16]. We will use the reactive
garbling scheme from [AHMR15]. We will later describe how to solder in
[AHMR15] and we then recall the notion of reactive garbling scheme from
[NR16] to the detail that we need in our proofs.

We finally assume that we have access to a programmable random oracle
H : {0, 1}κ → {0, 1}κ. Note that this in particular implies that H is collision
resistant.

We assume that we are to securely compute one circuit C which consist
of sub-circuits C and solderings between input wires and output wires of
these sub-circuits. We call the position in C in which a sub-circuit C is
sitting a slot and each slot is identified by some identifier id. There is a
public mapping from identifiers id to the corresponding sub-circuit C. If
C : {0, 1}n → {0, 1}m, then the inputs wires and output wires of the slot
are identified by id.in.1, . . . , id.in.n and id.out.1, . . . , id.out.m. Sub-circuits
sitting at a slot are called functional sub-circuits. There are also some special
sub-circuits:

• E in-gates, with n = 0 and m = 1. These are for letting E input a bit.
The output wire is identified by id.out.1.

• G in-gates, also with n = 0 and m = 1. These are for letting G input a
bit. The output wire is identified by id.out.1.

• E out-gates, with n = 1 and m = 0. These are the output gates of E.
The input wire is identified by id.in.1.

• G out-gates, with n = 1 and m = 0. These are the output gates of G.
The input wire is identified by id.in.1.

Besides a set of named sub-circuits, the circuit C also contains a set S of
solderings (id1, id2), where id1 is the name of an output wire of a sub-circuit
and id2 is the name of an input wire of a sub-circuit. We require that all
input wires of all sub-circuits are soldered to exactly one output wire of a
sub-circuit and that there are no loops. This ensures we can plaintext evaluate
the circuit as follows. For each in-gate id assign a bit xid and say that id.out.1
was evaluated. Now iteratively: 1) for each soldering (id1, id2) where id1
was evaluated, let xid2 = xid1 and say id2 was evaluated, and 2) for each
sub-circuit where all input wires were evaluated, run C on the corresponding
bits, assign the result to the output wires and say they are evaluated. This
way all out-gates will be assigned a unique bit. The goal of our protocol is
to let both parties learn their own output bits without learning any other
information. We assume some given evaluation order of the sub-circuits that
allows to plaintext evaluate in that order.

We assume that we have two functions L1, α1 : N → N for setting the
parameters of the cut-and-choose. Consider the following game parametrised
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by n ∈ N. First the adversary picks L = L1(n) balls. Let α = α1(n). Some
of them are green and some are red. The adversary picks the colours. Then
we sample uniformly at random L − αn of the balls. If any of the sampled
balls are red, the adversary immediately loses the game. Then we uniformly at
random throw the remaining αn balls into n buckets of size α. The adversary
wins if there is a bucket with only red balls. We assume that L1 and α1 have
been fixed such that the probability that any adversary wins the game is 2−s,
where s is the security parameter. Note that the functions depend on s, but
we ignore this dependence in the notation. We assume that we have two other
functions L2, α2 : N→ N. We consider a game similar to the above, but where
the adversary wins if all sampled balls are green and there is a bucket with a
majority of red balls. We assume that L2 and α2 have been fixed such that
the probability that any adversary wins the game is 2−s.

Overview of Notation

• id: generic identifier, just a bit-string naming an object.
• ∆id: the difference with identifier id. Defined to be the value in the

commitment with identifier id.dif. It should hold that lsb(∆id) = 1.
• σid: the indicator bit with identifier id. Defined to be the value in the

commitment with identifier id.ind.
• Kσid

id : base-key with identifier id. Defined to be the value in the commit-
ment with identifier id.base. It should hold that lsb(Kσid

id ) = 0.
• K1−σid

id : esab-key with identifier id. Defined to be Kσid
id ⊕∆id.

• K0
id: 0-key with identifier id.

• K1
id: 1-key with identifier id.

• Kid: key held by E. It should hold that Kid ∈ {K0
id,K

1
id}.

• L1(n): total number of objects to create when one component should be
good per bucket and n buckets are needed.

• α1(n): bucket size when one component should be good per bucket and
n buckets are needed.

• L2(n): as above, but majority in each bucket is good.
• α2(n): as above, but majority in each bucket is good.
• Par(id): mapping from input wire id to the unique parent output wire.

This is well-defined given the soldering set S.
• rco: A special wire index used in recovering inputs of a corrupted G.

Main Structure

The main structure of the protocol will be as follows.
function Main(C)

PreProcessKA()
PreProcessInKA()
PreProcessOTInit()
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PreProcessSub()
AssembleSubs()
AttachInKAs()
for all sub-circuit id in evaluation order do

if id is a G in-gate then InputG(id)
else if id is an E in-gate then InputE(id)
else if id is a G in-gate then OutputG(id)
else if id is a E out-gate then OutputE(id)
else EvSubs(id)
end if

end for
end function
We assume that E knows an input bit xid for each E in-gate id before it is

evaluated and that G knows an input bit xid for each G in-gate id before it is
evaluated. The inputs are allowed to depend adaptively on previous outputs.
At the end of the protocol E knows an output bit yid for each E out-gate id
and G knows an output bit yid for each G out-gate id.

During the pre-processing G will commit to key material for all wires. The
keys K0

id and K1
id will be well defined from these committed values, even if G is

corrupt. We then implement the input protocols and the evaluation protocols
such that it is guaranteed that for each wire, E will learn Kid ∈ {K0

id,K
1
id}.

We then implement the input protocols such that it is guaranteed that
for each G-input gate id the evaluator will learn some Kid ∈ {K0

id,K
1
id}.

This holds even if G or E is corrupted. If G is honest, it is guaranteed that
Kid = Kxid

id . If G is corrupted, then xid is defined by Kid = Kxid
id . Furthermore,

for each E-input gate E will learn Kid ∈ {K0
id,K

1
id}. This holds even if G or E

is corrupted. If E is honest, it is guaranteed that Kid = Kxid
id . If E is corrupted,

then xid is defined by Kid = Kxid
id . This ensures that after the input protocols,

an input bit xid is defined for each input wire, called the plaintext value of the
wire. This allows us to mentally do a plaintext evaluation of the circuits, which
gives us a plaintext bit for each output wire and input wire of all components.
We denote the bit defined for wire id by xid. We call this the correct plaintext
value of the wire. Note that this value might be known to neither E nor G.
However, by security of the input protocols E will learn the correct key Kxid

id

for in-gates. We then implement the evaluation protocol such that E iteratively
will also learn the correct keys Kxid

id for all internal wires id. For the G-output
wires, the evaluator E will just send Kxid

id to G who knows (K0
id,K

1
id) and can

decode to xid. By authenticity E cannot force an incorrect output. For the
E-output wires, the evaluator E will be given the indicator bit for the keys
which will allow to compute exactly xid from Kxid

id . That the evaluator learns
nothing else will follow from obliviousness of the garbling scheme.

We first describe some small sub-protocols and then later stitch them
together to the sub-protocol used above. During the presentation of the sub-
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protocols we will argue correctness of the protocols, i.e., that they compute the
correct keys Kxid

id . In the following section we will then give a more detailed
security analysis of the protocol.

Key Authenticators and Input

The following protocol is used to assign key material to an identifier id.
function GenWire(id,K,∆) . Require: lsb(∆) = 1

G: K0
id ← K . the 0-key

G: ∆id ← ∆ . the difference
G: K1

id ← K0
id ⊕∆id . the 1-key

G: σid ← lsb(K0
id) . the indicator bit

G: Commit(id.dif,∆id)
G: Commit(id.ind, σid)
G: Commit(id.base,Kσid

id )
end function

The key Kb
id will be used to represent the plaintext value b. From lsb(∆) = 1 it

follows that lsb(K0
id) = lsb(K1

id)⊕1. We set σid = lsb(K0
id). So, if lsb(K0

id) = 0,
then σid = 0 and hence lsb(Kσid

id ) = 0. And if lsb(K0
id) = 1, then σid = 1 and

hence lsb(Kσid
id ) = lsb(K1

id) = lsb(K0
id)⊕ 1 = 0. So in both cases

lsb(Kσid
id ) = 0 ,

as required. From setting σid = lsb(K0
id) it also follows that σid⊕1 = lsb(K1

id),
which implies that

lsb(Kb
id) = b⊕ σid ,

i.e., the last bit in the key is a one-time pad encryption of the plaintext value
of the key with the indicator bit. In particular, given a key and the indicator
bit, one can compute the plaintext value of the key as

b = lsb(Kb
id)⊕ σid .

The next protocol allows to verify key material associated with an identifier.
function VerWire(id)

G: Open(id.dif); E: receive ∆id
E: check lsb(∆id) = 1
G: Open(id.ind); E: receive σid
G: Open(id.base); E: receive Kσid

id

E: check lsb(Kσid
id ) = 0

E: K1−σid
id ← Kσid

id ⊕∆id
E: store K0

id,K
1
id,∆id, σid

end function
We say that the key material associated with an identifier is correct if it would
pass the verification protocol given that G opens all commitments. This just
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means that when K0
id, ∆id and σid are defined to be the values in the respective

commitments and K1
id is defined to be K0

id ⊕∆id, then

lsb(∆id) = 1

and
lsb(Kσid

id ) = 0 .
Note the key material generated with GenWire is correct. For brevity we will
just say that id is correct when the key material associated with id is correct.

The following protocol reveals information that is used to solder two
independent key materials. It will allow to translate a key for id1 to a key for
id2.
function GenSold(id1, id2)

G: Open(id1.ind, id2.ind); E: receive σid1,id2

if σid1,id2 = 0 then
G: Open(id1.base, id2.base)

else
G: Open(id1.base, id2.base, id2.dif)

end if
E: receive Kid1,id2

G: Open(id1.dif, id2.dif)
E: receive ∆id1,id2

check lsb(∆id1,id2) = 0
check lsb(Kid1,id2) = σid1,id2

end function
The last two checks ensure that if one of the key materials are correct, then
the other one is correct too. To see this, assume that id1 is correct. This just
means that

lsb(∆id1) = 1
lsb(Kσid1

id1 ) = 0 .
From lsb(∆id1) = 1, lsb(∆id1,id2) = 0 and ∆id1,id2 = ∆id1 ⊕∆id2 it follows
that

lsb(∆id2) = 1 .
We have by construction that

Kid1,id2 = K
σid1
id1 ⊕K

σid2
id2 ⊕ σid1,id2∆id2 .

Since we already established that lsb(∆id2) = 1 and we assumed that lsb(Kσid1
id1 ) =

0, we have that

lsb(Kid1,id2) = 0⊕ lsb(Kσid2
id2 )⊕ σid1,id2 .

Since E checks that lsb(Kid1,id2) = σid1,id2 , it follows that

lsb(Kσid2
id2 ) = 0 .
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Hence id2 is correct. Showing that id1 is correct if id2 is correct follows a
symmetric argument.

Note then that if both key materials are correct, then

Kid1,id2 = K
σid1
id1 ⊕K

σid2
id2 ⊕ σid1,id2∆id2

= K0
id1 ⊕ σid1∆id1 ⊕K0

id2 ⊕ σid2∆id2 ⊕ σid1,id2∆id2

= K0
id1 ⊕ σid1∆id1 ⊕K0

id2 ⊕ σid1∆id2

= K0
id1 ⊕K

0
id2 ⊕ σid1(∆id1 ⊕∆id2)

= K0
id1 ⊕K

0
id2 ⊕ σid1∆id1,id2 .

We use this later.
The following protocol shows how to use the soldering information. It

assumes that E already knows a key Kid for wire id. This key is either K0
id or

K1
id, but E might not know the plaintext value, so we use the generic name

Kid for the key.
function EvSold(id1, id2,K)

E: return K ⊕Kid1,id2 ⊕ lsb(K)∆id1,id2

end function
function EvSold(id1, id2)

E: retrieve Kid1

E: Kid2 ← EvSold(id1, id2,Kid1)
end function

Note that if both key material is correct and Kid1 = Kb
id1 = K0

id1 ⊕ b∆id1 ,
then

Kid1 ⊕Kid1,id2 =
(K0
id1 ⊕ b∆id1)⊕ (K0

id1 ⊕K
0
id2 ⊕ σid1∆id1,id2) =

K0
id2 ⊕ b∆id1 ⊕ σid1∆id1,id2 .

It is easy to see that when the key materials are correct then lsb(Kid1) = b⊕σid1 ,
from which it follows that

σid1∆id1,id2 ⊕ lsb(Kid1)∆id1,id2 = b∆id1,id2 .

So,

Kid2 = K0
id2 ⊕ b∆id1 ⊕ b∆id1,id2

= K0
id2 ⊕ b∆id2

= Kb
id2 ,

so Kb
id1 is mapped to Kb

id2 , as intended.
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Lemma 2 (correctness of soldering). If either id1 is correct or id2 is correct
and id1 has been soldered onto id2 without E aborting, then both of them are
correct and

EvSold(id1, id2,K
b
id1) = Kb

id2

for b = 0, 1.

The next protocol is used to generate key authenticators.
function GenKeyAuth(id)

G: K0
id ← {0, 1}κ

G: ∆id ← {0, 1}κ−1 × {1}
G: GenWire(id,K0

id,∆0
id)

G: Aid ← {H(K0
id), H(K1

id)}
G: Ps Aid

end function
Given a value A = {h1, h2} and a key K we write A(K) = > if H(K) ∈
A. Otherwise we write A(K) = ⊥. This protocol allows to verify a key
authenticator.
function VerKeyAuth(id)

VerWire(id)
E: check Aid = {H(K0

id), H(K1
id)}

end function
We call a key authenticator with identifier id correct if it would pass the
verification algorithm. Note that if it is correct, then Aid = {H(K0

id), H(K1
id)}

and E knows K0
id and K1

id as Kσid
id and ∆id were input to the commitment

functionality. It therefore follows from the collision resistance of H that if
A(K) = > for a key K computed in polynomial time, then K ∈ {K0

id,K
1
id}

except with negligible probability. Furthermore, if in addition A(K ′) = > and
K ′ 6= K, then K ⊕K ′ = ∆id.

When we generate key authenticators for input gates, we will use the special
form that K0

id = H(∆id).
function GenInKeyAuth(id)

∆id ← {0, 1}κ−1 × {1}
K0
id ← H(∆id)

GenWire(id,K0
id,∆0

id)
Aid ← {H(K0

id), H(K1
id)}

G sends Aid
end function

To verify this special form we use this protocol.
function VerInKeyAuth(id)

VerKeyAuth(id)
E: check Kid = H(∆id)

end function
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Note that if we are given a key Kb
id and ∆id for an input gate, then we can

compute b as follows. First compute K0
id = H(∆id). If Kb

id = K0
id, then b = 0.

Otherwise b = 1.
The following sub-protocol prepares a lot of key authenticators and uses cut-

and-choose to verify that most are correct. The unopened key authenticators
are put into buckets with a majority of correct ones in each bucket.
function PreProcessKA

`← #output wires of all functional sub-circuits
Let L = L2(`) . # KAs generated
Let αka = α2(`) . bucket size
∀Li=1 : GenKeyAuth(preka.i)
E: Sample V ⊂ [L] uniform of size L− αka`.
E: Ps V
∀i∈V : VerKeyAuth(preka.i)
for all functional sub-circuits id do

for all j = 1, . . . ,mid do
pick αka uniform, fresh KAs i 6∈ V
rename them to ids id.ka.1, . . . , id.ka.αka.
∀αkai=2 : GenSold(id.ka.1, id.ka.i)

end for
end for

end function
We call id.ka.1, . . . , id.ka.αka a KA bucket, and we identify it by id.ka.

We call id.ka KM correct if the key material associated with each id.ka.j is
correct. We call it KA correct if it is KM correct and furthermore a majority of
the KAs are correct, as defined above. By definition of L2 and α2 it follows that
for each id.ka there will be a majority of id.ka.j for which the key material
is correct, so there is in particular at least one for which this is true (except
with negligible probability). By Lemma 2 this implies that the bucket is KM
correct. By definition of L2 and α2 it then follows that it is additionally KA
correct. We get that:

Lemma 3 (robustness of KA buckets). If E is honest and G is honest or
corrupted, then except with negligible probability each KA bucket id.ka is
KA correct.

We also use protocols PreProcessInKA, which work exactly as Pre-
ProcessKA, except that in PreProcessInKA we let ` be the number of
input wires in C, we pre-process the key authenticators using GenInKeyAuth
instead, we verify using VerInKeyAuth, and we associated the unopened key
authenticators to the identifiers of the input wires instead. For an input wire
id the identifiers of the key authenticator will be id.ka.1, . . . , id.ka.αinka.

The following protocol evaluates a key authenticator. It selects from a set of
keys, namely the keys that are accepted by a majority of the key authenticators.
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If G is corrupted, then E might end up in the situation where it learns both
a 0-key and a 1-key for a wire, if both of these are in the input key set. In
that case we use a special recovery procedure Recover. This procedure will
recover the plaintext input of E and use it to do a plaintext evaluation of the
circuit instead of garbled evaluation. How this is done is described later.
function EvKAs(id,Kid)

α← αka . if generated using PreProcessKA
α← αinka . if gen. using PreProcessInKA
∀αi=1 : Ai ← Aid.ka.i . get key authenticators
L ← ∅
for K ∈ Kid do

K1 = K
∀αi=2 : Ki = EvSold(id.ka.1, id.ka.i,K)
if #{i ∈ {1, . . . , α} |Ai(Ki) = >} > α/2 then
L ← L ∪ {K}

end if
end for
if L = {K} then return K
else if L = {K0,K1} then

∆← K0 ⊕K1
Recover(id,∆)

else abort
end if

end function
Note that if id.ka is KA correct, then a majority of the key authenticators are
correct and all the key materials are correct. Therefore, if a key is put in L,
then it is was accepted by at least one correct key authenticator. So, if a key
K is in L, then by the properties of correct key authenticators and Lemma 2,
it follows that K ∈ {K0

id.ka.1,K
1
id.ka.1} except with negligible probability. So,

assuming that Kb
id.ka.1 ∈ Kid the outcome of the protocol is either to return

Kb
id.ka.1 or to call the recover protocol with the correct ∆ = ∆id.ka.1, except

with negligible probability.

Lemma 4 (robustness of EvKAs). If E is honest and G is honest or cor-
rupted, the following holds except with negligible probability. If for some
b ∈ {0, 1} it holds that Kb

id.ka.1 ∈ Kid, then EvKAs returns Kb
id.ka.1 or

calls Recover(id,∆) with ∆ = ∆id.ka.1. If for no b ∈ {0, 1} it holds that
Kb
id.ka.1 ∈ Kid, then EvKAs aborts.

The following protocol allows E to learn Kxid
id for a G in-gate, where G has

input xi, without E learning xi.
function InputG(id) . id is an ID of a G in-gate

G: retrieve the input bit xid for id
G: K ← Kxid

id.ka.1
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G: Ps K
E: Kid ← EvKAs(id, {K})
E: store Kid

end function

Definition 2. If G is corrupted and E is honest, then after an execution of
InputG(id), define xid as follows. If id.ka is KA correct, then define xid by
Kxid
id.ka.1 = Kid. Otherwise let xid = ⊥.

By Lemma 4, if G sends a key not from {K0
id.ka.1,K

1
id.ka.1}, then the

procedure aborts. Otherwise it outputs that key.

Lemma 5 (robustness of InputG). If G is corrupted and E is honest, then
after an execution of InputG(id) that did not abort, it holds except with
negligible probability that xid ∈ {0, 1} and it holds for the key Kid then stored
by E that Kid = Kxid

id .

It is more complicated to give input to E as G is not to learn which key was
received. To prepare for this oblivious input delivery we set up the oblivious
transfer functionality such that G is also committed to the ∆ chosen for the
OT.
function PreProcessOTInit

G: ∆ot ← {0, 1}κ
G: Commit(ot,∆ot)
G: OTinit(∆ot)
for i ∈ [s] do

G: Ri ← {0, 1}κ, OTsend(Ri, oti)
G: Commit(oti, Ri)
E: bi ← {0, 1}, Rbi ← OTreceive(bi, oti)
E: Ps (Rbi , bi)
G: receive (R̄i, b̄i); check R̄i = Rb̄i
if b̄i = 0 then

G: Open(oti)
else

G: Open(oti, ot)
end if
E: receive R̃i
E: check R̃i = Rbi

end for
end function

The PreProcessOTInit procedure ensures that the commitment to the
identifier ot is a commitment to the difference ∆ot which G chose for the OT
functionality. It was proven in [NST17] that the protocol is sound except with
probability 2−s and that it is straight-line zero-knowledge when the simulator
controls the commitment functionality.
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The following protocol allows E to learn Kxid
id for an E in-gate, where E has

input xi, without G learning xi and without E learning anything else.
function InputE(id) . id is an ID of an E in-gate

G: Rotid ← {0, 1}κ, OTsend(Rotid , otid)
G: Commit(otid, Rotid)
E: botid ← {0, 1}, Rbotid ← OTreceive(botid , otid)
E: retrieve the input bit xid for id
E: Ps fid = xid ⊕ botid
G: eid = fid ⊕ σid
E: id′ ← id.ka.1
if eid = 0 then

G: Open(id′, otid)
else

G: Open(id′, otid, ot)
end if
E : receive D = Kid′ ⊕Rotid ⊕ eid∆ot
G: Open(id′.dif, ot); E : receive Sid = ∆id′ ⊕∆ot
G: Open(id.ind); E : receive σid
E: K = D ⊕Rbotid ⊕ (xid ⊕ σid)Sid
E: Kid′ ← EvKAs(id, {K})
E: check lsb(Kid′) = xid ⊕ σid
E: store Kid′

end function
Then identify the output wire id.1 with id.ka.1, such that Kid = Kid′ . If G
in the above commits honestly to the value Rotid he also inputs to the OT
functionality then we indeed see that

Kid = D ⊕Rbotid ⊕ (xid ⊕ σid)Sid
= (Kid′ ⊕Rotid ⊕ eid∆ot)⊕Rbotid ⊕ (xid ⊕ σid)(∆id′ ⊕∆ot)
= (Kid′ ⊕ botid∆ot ⊕ eid∆ot)⊕ (xid ⊕ σid)(∆id′ ⊕∆ot)
= Kid′ ⊕ (xid ⊕ σid)∆ot ⊕ (xid ⊕ σid)(∆id′ ⊕∆ot)
= Kid′ ⊕ (xid ⊕ σid)∆id′
= Kxid

id′ = Kxid
id .

If instead G cheats and commits to a value R̄ 6= Rotid then

K = Kxid
id′ ⊕ F ,

where
F = R̄⊕Rotid .

Note that when G is honest, then F = 0 and therefore K = Kxid
id′ . If G uses

F 6∈ {0,∆id′}, then
K 6∈ {K0

id′ ,K
1
id′} ,
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so by Lemma 4 it holds that except with negligible probability the procedure
aborts. Importantly, this happens independent of the value of xid. If G uses
F = ∆id′ , then

K = Kxid
id′ ⊕∆id′ = K1⊕xid

id′ .

so by Lemma 4 it holds that

Kid′ = K1⊕xid
id′ .

As we have ensured that lsb(∆id′) = 1 for all KA buckets except with negligible
probability (by Lemma 3) it follows from the check lsb(Kid) = xid ⊕ σid that
when K = K1⊕xid

id′ , then the procedure aborts. So, all in all, if a cheating
E uses F 6= 0, then the procedure aborts except with negligible probability,
independently of the value of xid.

Lemma 6 (robustness of InputE). The following holds except with negligible
probability. If G is corrupted and E is honest, then an execution of InputE(id)
will abort or not independently of the value of xid. Furthermore, when it does
not abort, then it holds for the key Kid stored by E that Kid = Kxid

id .

Functional Sub-Circuits

The following protocol generates a garbled circuit of circuit C and generates
the key material for all input wires and output wires. All these wires share
the same difference.
function GenSub(id, C) . C : {0, 1}n → {0, 1}m

G: (K1, . . . ,Kn)← ({0, 1}κ)n
G: ∆id ← {0, 1}κ−1 × {1}
G: (L1, . . . , Lm, Fid)← Gb(K1, . . . ,Kn,∆id)
G: Ps Fid
∀ni=1 : GenWire(id.in.i,Ki,∆id)
∀mi=1 : GenWire(id.out.i, Li,∆id)

end function
The following protocol allows to verify that the garbling was done correctly.
function VerSub(id, C) . C : {0, 1}n → {0, 1}m
∀ni=1 : VerWire(id.in.i)
∀mi=1 : VerWire(id.out.i)
E: ∆id ← ∆id.in.1
E: ∀ni=2 : check ∆id.in.i = ∆id
E: ∀mi=1 : check ∆id.out.i = ∆id
E: ∀ni=1 : Ki ← K0

id.in.i

E: ∀mi=1 : Li ← K0
id.out.i

E: check (L1, . . . , Lm, Fid) = Gb(K1, . . . ,Kn,∆id)
end function
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We call a generated garbled sub-circuit with identifier id correct if it would
pass the above verification protocol. Notice that if it is correct, then for all
x ∈ {0, 1}n and y = C(x) it holds that Ev(Fid,Kx

id.in) = Ky
id.out, which shows

that the following protocol works as intended.
function EvSub(id)

E: ∀ni=1 : Ki ← retrieveKid.in.i
E: (L1, . . . , Lm)← Ev(Fid,K1, . . . ,Kn)
E: ∀mi=1 : storeKid.out.i ← Li

end function

Lemma 7 (correctness of EvSub). If Kid.in.i = Kxi
id.in.i for i = 1, . . . , n and

id is correct, then after an execution of EvSub(id) it holds that Kid.out.i =
Kyi
id.out.i for i = 1, . . . ,m, where y = C(x).

The following protocol will generate garblings of all the needed types of
sub-circuits. It will generate more than needed. Some of these will be opened
and checked. The rest will be assigned at random into buckets. Each slots id
will be assigned some αid unopened circuits.
function PreProcessSub

for all sub-circuit types C do
Let ` be the number of times C is used.
Let L = L1(`) . #circuits generated
Let αid = α1(`) . bucket size
∀Li=1 : GenSub(C.pre.i, C)
E: Sample V ⊂ [L] uniform of size L− αid`.
E: Ps V
∀i∈V : VerSub(C.pre.i, C)
for all slots id where C occurs do

pick αid uniform, fresh circuits i 6∈ V
rename them to have ids id.1, . . . , id.αid.
∀αidi=2 : GenSoldSub(id.1, id.i)

end for
end for

end function
By fresh we mean that no circuit is assigned to more than one slot. We used
this sub-protocol.
function GenSoldSub(id1, id2)
∀ni=1 : GenSold(id1.in.i, id2.in.i)
∀mi=1 : GenSold(id2.out.i, id1.out.i)
∀mi=1 : GenSold(id.1.out.i, id.1.out.i.ka.1)

end function
After all sub-circuits have been preprocessed the below procedure can be

applied to stitch them all together to compute the final functionality C.
function AssembleSubs
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for all functional sub-circuits id do
∀ni=1 : idpar.i ← Par(id.1.in.i)
∀ni=1 : GenSold(idpar.i, id.1.in.i)

end for
end function

If the linking of components are done adaptively, the above soldering is done
only when needed.

The following procedure is used to evaluate a bucket of garbled sub-circuits
that have been soldered together. Since each sub-circuit might give different
output keys (if G is corrupted) the output for each output wire might not be a
single key, but a set of keys. We therefore use the associated KAs to reduce
this set to one key. If the reduced set contains two keys we will again call the
recovery mechanism, which we are still to describe.
function EvSubs(id)

. Evaluate first circuit in bucket
∀nj=1 : idpar.j ← Par(id.1.in.j)
∀nj=1 : EvSold(idpar.j , id.1.in.j)
∀nj=1 : retrieve Kid.1.in.j
EvSub(id.1)
∀mj=1 : retrieve Kid.1.out.j
∀mj=1 : EvSold(id.1.out.j, id.1.out.j.ka.1)
∀mj=1 : Kj ← {Kid.1.out.j.ka.1} . key sets

. Evaluate remaining circuits in bucket
for i = 2, . . . , αid do E:
∀nj=1 : EvSold(id.1.in.j, id.i.in.j)
EvSub(id.i)
∀mj=1 : EvSold(id.i.out.j, id.1.out.j)
∀mj=1 : EvSold(id.1.out.j, id.1.out.j.ka.1)
∀mj=1 : Kj ← Kj ∪ {Kid.1.out.j.ka.1}

end for
∀mj=1 : Kid.1.out.j ← EvKAs(kaj ,Kj)

end function

Lemma 8 (robustness of EvSubs). If G is corrupt and E is honest and the sub-
circuit for id is C, then the following holds except we negligible probability. If
Kidpar.j = K

xj
idpar.j for j = 1, . . . , n, then after an execution of EvSubs(id) that

did not call Recover it holds that Kid.1.out.j = K
yj
id.1.out.j for j = 1, . . . ,m,

where y = C(x).

Proof. All the following statements hold except with negligible probability,
assuming the premise of the above lemma. As we argued when we established
Lemma 4, we can argue that all the key material used in EvSubs is correct. This
follows from Lemma 2 as all the key material sits in buckets that are soldered
and each bucket contains at least one correct key material by construction. It
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then follows from Lemma 2 that Kid.1.in.j = Kxi
id.1.in.j . By definition of L1 and

α1 we have that at least one circuit id.i is correct. By Lemma 2 and Lemma 4
it therefore follows that Kid.1.out.j ∈ Kj . By Lemma 4 it then follows that
either Recover is called, or Kid.1.out.j = K

yj
id.1.out.j .

Output

The following protocol allows E to get an output.
function OutputE(id) . id: ID of an E output gate

E: retrieve soldering (id1, id.out.1) from C.
E: retrieve Kid1 .
G: Open(id1.ind); E: receive σid1

E: yid ← lsb(Kid1)⊕ σid1 .
end function

Lemma 9 (robustness of OutputE). If G is corrupt and E is honest and
Kid1 = Kb

id1 , then after an execution of OutputE that does not abort, it holds
that yid = b. Furthermore, whether or not the protocol aborts is independent
of yid.

The first part of the lemma follows from lsb(Kb
id1) = b⊕ σid1 . The second

part is obvious as the protocol aborts only if the commitment is not opened,
which is the choice of G, and G does not know yid.

The following protocol allows G to get an output.
function OutputG(id) . id: ID of an G output gate

E: retrieve soldering (id1, id.out.1) from C
E: retrieve Kid1

E: Ps Kid1

G: receive Kid1

G: check Kid1 ∈ {K0
id1 ,K

1
id1}

G: yid ← b where Kb
id1 = Kid1 .

end function
Correctness follows from authenticity of the garbling scheme. Even a corrupt E
will know some key Kid1 ∈ {K0

id1 ,K
1
id1} and this by correctness of the circuits

and solderings is the right one. Sending another key K ′ ∈ {K0
id1 ,K

1
id1} would

break authenticity. Security against E follows from obliviousness.

The following results is immediate by inductively applying the above
lemmas.

Lemma 10 (robustness without recover). If G is corrupt and E is honest and
the protocol does not abort and does not call Recover, then the following
holds except with negligible probability. For each input gate id the evaluator
holds Kid = Kxi

id. For E-in-gates xi is the correct input of E. Furthermore,
for each output gate id′, the evaluator E holds Kid′ = Kyi

id′ where yi is the
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plaintext value obtained by evaluating C in plaintext on the input values xid.
Furthermore, the probability that the protocol aborts is independent of the
inputs of E.

Notice that it might not be the case that whether or not Recover is called
is independent of the inputs of E. It is in fact easy for a corrupt G to construct
garblings for which we go into recovery mode if and only if some internal wire
has plaintext value 1. This is called a selective attack.

Recovery

The description of the above procedures for evaluation and output assume
that Recover has not been called. We now describe what happens when
Recover is called. Recall that Recover is called in EvKAs when that
procedure learns both the 0-key K0

id and the 1-key K1
id for some wire id. The

issue is that the procedure then cannot know which key is the right one, as it
does not know the plaintext value xid nor does it know which key is the 0-key.

When the procedure is called, it is called as Recover(id,∆), where
id.ka.1, . . . , id.ka.α are the identifier of key authenticators that have been
produced using PreprocessKA or PreprocessInKA. Furthermore, ∆ is
the difference for the key authenticator id.ka.1

Let E be the set of identifiers id for which id is an in-gate. This implies
that if id ∈ E , then id.ka.1, . . . , id.ka.αinka are identifiers of input key authen-
ticators. By construction a majority of them are correct except with negligible
probability.

Let I be the set of identifiers id with which Recover could be called but
which are not in E , these are internal wires (non-input wires) with associated
KA buckets. This implies that if id ∈ I, then id.ka.1, . . . , id.ka.αinka are
identifiers of key authenticators. By construction a majority of them are correct
except with negligible probability.

As a simple motivating example assume that recover is called with an
identifier from E . The following procedure shows how this allows to recover
the plaintext value xid.
function RecoverInputBit(id,∆) . ∆ = ∆id.ka.1
id′ ← id.ka
∆1 ← ∆
α← αinka
∀αj=1 retrieve Kj ← Kid′.j ;
∀αj=2 retrieve ∆id′.1,id′.j ; ∆j ← ∆id′.1,id′.j ⊕∆1
if #{j ∈ {1, . . . , α} |H(∆j) = Kj} > α/2 then

xid ← 0
else xid ← 1
end if

end function
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Lemma 11. If G is corrupt and E is honest, the following holds except with
negligible probability. If Kid = Kb

id and ∆ = ∆id.ka.1, then after an execution
of RecoverInputBit(id,∆) it holds that xid = b.

Proof. The following statements hold except with negligible probability. By
premise there exists b such that Kj = Kb

j for all j. By Lemma 3 it holds that
∆j = ∆id′.j for all j. This implies that for the majority of correct input key
authenticators it holds that H(∆j) = Kj if and only if Kj = K0

j . Hence, if
b = 0, it will hold for a majority of j that H(∆j) = Kj , and if b = 1 it will
hold for a majority of j that H(∆j) 6= Kj .

Consider then the case where Recover is called with id 6∈ E . We want
to ensure that if G is caught cheating, then E can recover all inputs of G and
then evaluate C in plaintext. For this we only have to ensure that if Recover
is called with id ∈ I, then it can call RecoverInputBit with all id ∈ E . To
facilitate this, we are going to create on special wire rco and solder all id ∈ I
onto rco and solder rco onto all id ∈ E . For security reasons we do not do
full solderings, we only release the difference between the ∆ values. That way,
if we learn the difference for any id ∈ I, we can learn the difference for all
id ∈ E , and we are done.

The following procedure will be run together with all the other preprocessing
protocols.
function PreProcessRecovery

G: ∆rco ← {0, 1}κ
G: Commit(rco,∆rco)
G: ∀id ∈ I ∪ E : Open(id.ka.1.dif, rco)
E: ∀id ∈ I ∪ E : receive ∆id,rco
G: ∀id ∈ E : Open(rco, id.ka.1.dif)
E: ∀id ∈ E : receive ∆rco,id

end function
The following procedure uses the ∆-solderings to recover all the inputs.
function RecoverInputBits(id,∆) . ∆ = ∆id.ka.1

retrieve ∆id,eecov
∆rco ← ∆id,rco ⊕∆
for all id′ ∈ E do

retrieve ∆rco,id′
∆id′ ← ∆rco,id′ ⊕∆rco
RecoverInputBit(id′,∆id′)

end for
end function

The following result is immediate.

Lemma 12. If G is corrupt and E is honest, the following holds except with
negligible probability. If Kid′ = K

bid′
id′ for all input gates id′ and ∆ = ∆id.ka.1,
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then after an execution of RecoverInputBits(id,∆) it holds that xid′ = bid′

for all input gates id′.

Notice that RecoverInputBits not only computes xid for all input gates.
It can also compute the key K0

id and the difference ∆id. From the inputs
xid it can compute the correct plaintext value xid for all wires id. From the
keys K0

id and the differences ∆id it can use Gb iteratively to compute also the
correct key K0

id and the correct difference ∆id for all sub-sequence wires id, as
it has all the information it needs to compute the garblings the way G ought to
have done it if it started from the computed inputs keys and differences. This
will in particular allow E to compute for each G-output gate id the plaintext
output xid and the key Kid = K0

id ⊕ xid∆id. This is how the outputs will be
computed in recovery mode.
function Recover(id,∆) . ∆ = ∆id.ka.1

RecoverInputBits(id,∆)
go to recovery mode

end function
function OutputG(id) . In recovery mode

E: retrieve soldering (id1, id.out.1) from C
E: retrieve xid1

E: retrieve K0
id1

E: retrieve ∆0
id1

E: Ps K
xid1
id1

end function
function OutputE(id) . In recovery mode

E: retrieve soldering (id1, id.out.1) from C.
E: retrieve xid1 .
E: yid ← xid1 .

end function
The following result follows from the above discussion.

Lemma 13 (robustness with recover). If G is corrupt and E is honest and
the protocol calls Recover, then the following holds except with negligible
probability. For each input gate id the evaluator holds Kid = Kxi

id. For
E-in-gates xi is the correct input of E. Furthermore, for each output gate id′,
the evaluator E holds Kid′ = Kyi

id′ where yi is the plaintext value obtained by
evaluating C in plaintext on the input values xid. Furthermore, the probability
that the protocol aborts is independent of the inputs of E.

By combining Lemma 10 and Lemma 13 we get:

Theorem 5 (robustness). If G is corrupt and E is honest and the protocol
does not abort, then the following holds except with negligible probability.
For each input gate id the evaluator holds Kid = Kxi

id. For E-in-gates xi is
the correct input of E. Furthermore, for each output gate id′, the evaluator
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E holds Kid′ = Kyi
id′ where yi is the plaintext value obtained by evaluating C

in plaintext on the input values xid. Furthermore, the probability that the
protocol aborts is independent of the inputs of E.

Recall the issue with the selective attack that a corrupt G can ensure that
Recover is called based on for instance the value of an internal wire. We now
see that this is handled by making sure that in recovery mode, we return the
exact same values to G as we would when we are not in recovery mode,

5.9 Analysis
Our proof follows the proofs in [NST17] and [AHMR15] closely. Redoing the
proofs in the full, glorious detail in the UC model would have us reiterate much
of the proofs in these papers. We will instead sketch the overall structure of the
formal proof and point to [NST17] and [AHMR15] for the details. We realize
that this means that only the reader which is familiar with the UC model and
and the mentioned papers may completely verify the proofs. However, since
the UC model and our the proof techniques are standard by now we find this
a reasonable level of proof detail.

Corrupt G

We first prove security for the case where G is corrupt and E is honest.
Without going into the details of the UC framework, let us just recall

that the proof tasks as usual are as follows. When G is corrupted and E is
honest, we should present a poly-time simulator S. It plays the role of E in
the protocol. But as opposed to E it is not being given the inputs xE of E.
Instead it has access to an oracle OxE(·) containing xE. The simulator might
once supply a possible set of inputs xG of G to the oracle and learn the outputs
yG = OxE(xG) that G would have if C was evaluated on the xE in the oracle
and the provided xG.

The simulator S proceeds as follows. It runs as the honest E would do, but
with two modifications. 1) It uses dummy inputs xid = 0 for all E-in-gates and
2) there is a modification in OutputG, which we describe below.

For all G-in-gates id it inspects the commitment functionality and learns
K0
id and ∆id and computes K1

id from these. From all G-in-gates it can then
retrieve Kid = Kxid

id which is well defined by Theorem 5. This defined the
inputs xid of G. Then it calls its oracle with those input bits of G and for
all G-out-gates id it receives from the oracle O the output yid obtained by
running C in plaintext with those inputs xid and the unknown input bits of E.
If the protocol aborts, then the simulator aborts too. If the protocol reaches an
execution of OutputG, then the simulator will send the key Kxid1

id1 computed
as in recovery mode. Note that it can do this as it knows all the keys and
therefore can compute K0

id1 and K1
id1 exactly as in recovery mode, and it was
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given yid from the oracle. It follows directly from Theorem 5 that the real
protocol and the simulation aborts with the same probability and that when
they do not abort, then the key returned to G from the simulator is the same
that the honest E would have sent, except with negligible probability.

Corrupt E

We then prove security for the case where G is honest and E is corrupt.
Without going into the details of the UC framework, let us just recall that

the proof tasks as usual are as follows. When E is corrupted and G is honest, we
should present a poly-time simulator S. It plays the role of G in the protocol.
But as opposed to G it is not being given the input xG of G. Instead it has
access to an oracle OxG(·) containing xG. The simulator might once supply a
possible input xE of E to the oracle and learn the outputs yE = OxG(xE) that
E would have if C was evaluated on the xG in the oracle and the provided xE.

The simulator S proceeds as follows. It runs as the honest G would do, but
with two modifications. 1) It uses dummy inputs x′id = 0 for all G-in-gates and
2) there is a modification in OutputE, which we describe below.

For all E-in-gates id it inspects the commitment functionality and learns
K0
id and ∆id and computes K1

id from these. From all E-in-gates it can then
retrieve Kid = Kxid

id which is well defined as G is honest and therefore followed
the protocol. This defined the inputs xid of E. Then it calls its oracle with
those input bits of E and for all E-out-gates id it receives from the oracle the
output yid obtained by running C in plaintext with those inputs xid and the
unknown input bits of G.

If the protocol aborts, then the simulator aborts too.
If the protocol reaches an execution of OutputE, then the simulator will

retrieve the output yid learned from OxG(xE). Then it retrieves the key Kid1

and computes
σ′id1 = lsb(Kid)⊕ yid .

Then it runs OutputE as in the protocol. To understand why we make this
change, recall that S ran G with dummy inputs, so it might be the case that
Kid.1 encodes a different output than yid. Therefore, sending σid.1 might result
in E getting a wrong output, which would allow it to learn that it is in the
simulation.

We should now argue that the value seen by E in the simulation and in the
real execution are computationally indistinguishable. Notice that if we ran the
simulation but using the real inputs xG for G instead of dummy inputs, then
in all executions of OutputE it would be the case that σid1 = lsb(Kid) ⊕
yid = σid1 for all E-out-gates. Therefore there is not really a modification of
the commitment functionality when OutputE is simulated. Therefore, the
simulation run with real inputs is just the real protocol. This means that it is
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sufficient to argue that the values seen by E in the simulation with dummy
input x′G and with real input xG are computationally indistinguishable.

We do that via a reduction to obliviousness of the reactive garbling scheme
and the fact that H is a random oracle. The reduction will have access to the
real input of xG and an oracle producing garbled circuits along with encodings
of either dummy inputs or the real inputs. It will then augment these to make
them look like a run of the simulation with dummy inputs or real inputs.

In a bit more detail, in the obliviousness game in [NR16] we will have access
to an oracle Ob for a uniformly random bit b. We can give Ob a command
of the form (garble, id, C). Then it garbles C and gives us Fid, keeping the
keys secret. If we later give the command (reveal, id), then we are given all
keys used in garbling Fid. We can also give the command (link, id1, i1, id2, i2).
The oracle will release the information used to solder output wire i1 in Fid1

onto input wire i2 in Fid2 as specified in GenSold. We can also give the
command (input, id, i, x0, x1). The oracle will compute the keys K0 and K1 for
input wire i in Fid. It then gives us Kxb . There are some natural restrictions.
There is not allowed to be any loops in linking wires between circuits. No
identifier is allowed to occur in both a reveal and a link command. No
wire (id2, i2) is allow to occur in two different call to (input, id2, i2, ·, ·) or
two calls to (link, ·, ·, id2, i2). No input wire is allowed to occur in both a call
(input, id2, i2, ·, ·) and a call (link, ·, ·, id2, i2). At the end we have to make a
guess at b. The security definition says that no poly-time adversary can guess
b with better than negligible probability. The definition of authenticity say
that the adversary cannot for some wire id compute both K0

id and K1
id given

the information it receives in the game.
In fact, the definition in [NR16] does not have the reveal command. We

add this command here, getting a notion of adaptive, reactive garbling. It
is straight forward to verify that the scheme in [AHMR15] is an adaptive,
reactive garbling scheme in the above sense. This is achieved by using the
strong programmable random oracle model.

We need to add an additional command (difdif, id1, id2). In response to
this the oracle will release ∆id1 ⊕∆id2 , where ∆idi is the difference used to
garble Fidi . No identifier is allowed to occur in both a difdif and a reveal
command, i.e., one is only allowed to learn ∆id1 ⊕ ∆id2 when both ∆id1

and ∆id2 are unknown. It is straight forward to verify that the scheme in
[AHMR15] is an adaptive, reactive garbling scheme even when this command
is added. The scheme would trivially still be secure if the same ∆ was used on
two unrevealed garblings, i.e., if ∆id1 = ∆ and ∆id2 = ∆ for random ∆. To
see this, consider garbling two circuits C1 and C2 by garbling the circuit C1‖C2
which runs the two circuits in parallel. This would exactly provide garblings
of C1 and C2 with a common ∆. It is straight forward to go through the proof
of [AHMR15] and verify that first garbling using independent ∆id1 and ∆id2

and then releasing ∆id1 ⊕∆id2 does not break the security. To see this note
that in the proof, when id1 and id2 are unrevealed, then the distribution of
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∆idi is statistically close to uniform, except that lsb(∆idi) = 1. Furthermore,
the security depends only on ∆idi being statistically close to uniform, not that
the ∆idi are independent, which is what allows that ∆id1 = ∆id2 . This means
we can simulate ∆id1 ⊕∆id2 by a uniformly random value ∆ with lsb(∆) = 0,
as it is still ensured that each ∆idi has full entropy given ∆.

We will go over each of the sub-protocols and argue how to simulate the
values sent to E.

When the simulation is run with dummy inputs for G, we call it the dummy
mode. When the simulation is run with real inputs for G, we call it the real
mode.

When we say that a protocol is trivial to simulate it means that the protocol
sends no values to E, so there are no values to simulate.
.GenWire(id,K,∆): When this sub-simulator is called the key material
(K0
id,∆id) is already defined and sitting inside O as part of some circuit. This

also defines K1
id and σid. The simulator is not given these values. We then

simulate the commitments by sending E notifications that the commitments
were done. These value are clearly the same in the dummy and the real mode.
Notice that by this way of simulating, it holds that for each wire id which
has associated key material in the protocol, the oracle Ob will hold this key
material, so we can work on it using the interface of Ob.
.VerWire(id): Here we send all the key material to E. The simulator will ask
its oracle Ob to reveal the circuit that (K0

id,∆id) is part of. This will give it
the needed key material. Then it patches the commitment functionality to
open to those values before decommitting.
.GenSold(id1, id2): The values sent to E here are exactly the soldering values
of the reactive garbling scheme [AHMR15]. The simulator can therefore request
to get the values from its oracle.
.EvSold(id1, id2,K): Trivial.
.GenKeyAuth(id): The simulator will first ask its oracle Ob to make a garbling
of a circuit with one input wire and one output wire and one gate which is
the identity gate. Such a garbling consist simply of K0

id and ∆id. So now
the key material (K0

id,∆id) is defined and sitting inside O as part of some
circuit. We call the simulator for GenWire on these. We additionally have
to simulate the value Aid = {H(K0

id), H(K1
id)}. This is complicated by the

fact that S does not know K0
id or K1

id, as the key material is sitting inside
Ob. Recall, however, that we assume a programmable random oracle. We can
therefore simply sample two uniformly random value h, h′ ← {0, 1}κ and let
Aid = {h, h′}. If E later queries H in an unrevealed key authenticator on its
key Kid ∈ {K0

id,K
1
id}, then we return h. Except with negligible probability

it will never query on the other key, as this would break authenticity. Notice
that we did not pick whether H(K0

id) = h or H(K0
id) = h′. We do not need to

do this as Aid is sent as a set. This is important as we do not know the value
of Kid.
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.VerKeyAuth(id): Here we first simulate VerWire and learn K0
id and K1

id.
Then define H(K0

id) := h or H(K1
id) := h′. If the oracle had been called on

K0
id or K1

id before, this might give an inconsistent simulation. However, if
the oracle had been called on K0

id or K1
id before, then E guessed one of the

keys without being given any information about the key. Since the keys are
uniformly random this happens with negligible probability.

.GenInKeyAuth(id): This protocol is simulated as GenKeyAuth, but we
additionally have to ensure that H(∆id) = K0

id. The values ∆id and K1
id are

not known to S, as they are sitting inside Ob. But we can still define that
H(∆id) = K0

id. We will only have to return K0
id if H is ever evaluated on

H(∆id). If id is never verified, this would involve E guessing ∆id after being
given only one key, which would break authenticity of the garbling scheme.
For the case where id is verified, see below.

.VerInKeyAuth(id): Simulated as VerInKeyAuth. This lets S learn K0
id and

∆id. Then it programs H to H(∆id) = K0
id. If the oracle had been called on

∆id before, this might give an inconsistent simulation. However, if the oracle
had been called on ∆id before the wire it verified, then E guessed this value
without being given any information about ∆id. Since ∆id has κ− 1 bits of
min-entropy this happens with negligible probability.

.PreProcessKA(): The protocol is simulated by running honestly and sim-
ulating all the calls to GenKeyAuth, VerKeyAuth and GenSold. No
additional values are sent.

.EvKAs(id,Kid): Trivial.

. InputG(id): Let x′id = 0 be the input bit of G in dummy mode and let xid
be the input bit of G in real mode. Ask the oracle Ob to get the encoded input
for id.ka.1. Submit the bit-pair (x′id, xid). The simulator learns K = Kx

id.ka.1,
where x = x′id if b = 0 and x = xid if b = 1. Send K to E. The distribution of
K is exactly as in dummy mode when b = 0 and exactly as in real mode when
b = 1.

.PreProcessOTInit(): It was shown in [NST17] how to simulate this protocol.
This can be done without knowing ∆ot. This is important as we need to
implicitly define ∆ot below.

. InputE(id): When running this protocol the simulator will pick Rbotid uni-
formly a random and output this to E from the OT. This is needed as the
simulator does not know ∆ot. Now E receives the values D, σid an Sid along
with some notification values there are trivial to simulate. It is therefore
enough to show how to simulate these three values. Let botid be the choice bit
of E in the call to the OT. The simulator can inspect the ideal functionality
and learn this value. Let fid be the bit sent by E. Let xid ← fid⊕ botid . Define
this to be the input of E. Ask the oracle Ob to get the encoded input for id′.
Submit the bit-pair (xid, xid). The simulator learns K = Kxid

id′ . By definition
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we have that lsb(Kid′) = xid ⊕ σid, which allows to simulate σid as

σid = lsb(Kid′)⊕ xid ,

as the simulator knows Kid′ and xid. To simulate Sid we send a uniformly
random value. This will implicitly define ∆ot by ∆ot = Sid ⊕∆id′ , where the
simulator does not know ∆id′ as it is sitting inside O. A little more care must
be done. The above simulation of Sid works for the first call to InputG. For
the next call (with identifier îd say) we should ensure that ∆̂ot = Sîd ⊕∆

îd
′

becomes defined to the same ∆ot as when we simulated for id. This means
that we should ensure that Sid ⊕∆id′ = Sîd ⊕∆

îd
′ , which is equivalent to

Sîd = Sid ⊕∆id′ ⊕∆
îd
′ . To ensure this the simulator ask Ob for ∆id′ ⊕∆

îd
′

using the difdif-command and computes Sîd as required. By inspection of the
protocol we see that K = D ⊕Rbotid ⊕ (xid ⊕ σid)Sid. This allows to simulate
D as

D = K ⊕Rbotid ⊕ (xid ⊕ σid)Sid ,
as the simulator can compute K, Rbotid , xid, σid and Sid at the time where it
needs to send D. It compute K as K = Kid′ . It picked Rbotid itself. It already
computed xid and σid and Sid.
.GenSub(id, C): We simulate by asking Ob to generate and give us Fid. This
also defines key materials (Ki,∆id)ni=1 and (Li,∆id)mi=1 sitting inside O. We
call the simulator for GenWire to simulate these.
.VerSub(id, C): We simulate by asking Ob to reveal Fid. This gives us the key
materials (Ki,∆id)ni=1 and (Li,∆id)mi=1 sitting inside O. We call the simulator
for VerWire with these.
.EvSub(id): Trivial.
.PreProcessSub(): This protocol including the call to GenSoldSub is simu-
lated by simulating the calls to GenSub, VerSub and GenSold as described
above. No further messages are sent.
.AssembleSubs(): This protocol is simulated by simulating the calls to Gen-
Sold as described above. No further messages are sent.
.EvSubs(id): Trivial.
.OutputE(id): Recall that here the simulator will retrieve the output yid
learned from OxG(xE) and the key Kid held by E and send σ′id1 = lsb(Kid)⊕yid
to E. We do the same in the reduction.
.OutputG(id): Trivial.
.RecoverInputBit: Trivial.
.PreProcessRecovery: Here we have to give away all the differences ∆rco,id
and ∆id,rco.

Consider the first id ∈ E∪I. We need to compute ∆id,rco = ∆id.ka.1⊕∆rco
for an unknown ∆id.ka.1. We do this by picking ∆id,rco uniformly at random
and defining

∆rco = ∆id.ka.1 ⊕∆id,rco .
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This is possible as we never have to release ∆rco so we do not need to know it.
Consider the remaining îd ∈ E ∪ I. We need to compute

∆îd,rco = ∆îd.ka.1 ⊕∆rco
= ∆îd.ka.1 ⊕∆id.ka.1 ⊕∆id,rco .

We can do this as we can get ∆îd.ka.1 ⊕∆id.ka.1 using the difdif-command
and we know ∆id,rco. We compute the values ∆rco,id similarly.
.RecoverInputBits: Trivial.

It now follows that if b = 0, then the distribution of the reduction is exactly
that of the dummy model and if b = 1, then the distribution of the reduction is
exactly that of the real model. Since we only allowed queries to Ob, it follows
that the dummy mode and the real are computationally indistinguishable.
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